OpenRoads Designer (ORD) Survey Processing Guidelines #### **Contents** | Introduction to OpenRoads Survey | 2 | |--------------------------------------------------------------------------------------------------------------------------------|-----| | Create a Survey Project | 2 | | Ribbon and Workflows | 6 | | Setting the Geographic Coordinate System | 6 | | Setting the Drawing Scale | 8 | | Create Field Book and Import Survey Data | g | | Importing Multiple Survey Data Files - Drag and Drop Process | 12 | | Placing the Datum Note | 12 | | Displaying the Background Map | 16 | | Reviewing and Editing Survey Data | 19 | | Creating Primary Control Report | 31 | | Creating and Editing Terrain Model | 37 | | Review and Editing Crossing Features | 40 | | Annotate Notes | 41 | | Finalizing OpenRoads Survey File | 42 | | | | | Appendix A – Converting OpenRoads Designer to InRoads and MicroStation Appendix B – Import InRoads FWD and DTM files into ORD | | | | ا ت | This document was developed as part of the continuing effort to provide guidance within the South Dakota Department of Transportation in fulfilling its mission to efficiently provide a safe and effective public transportation system through our core values of high ethical standards, stewardship, transparent public service, safety, teamwork, and improvement. This document is not intended to establish policy within the Department, but to provide guidance in adhering to the policies of the Department. Your comments, suggestions, and ideas for improvements to this document are welcomed. ## Introduction to OpenRoads Survey OpenRoads Survey provides surveyors with effective tools to import, review and edit survey data collected in the field in a CAD environment. These guidelines have been developed as part of the SDDOT statewide implementation of OpenRoads Designer (ORD). The intent of this document is to provide guidelines and standards for processing survey data in ORD. Updates to this document will be made periodically when minor revisions, additional information, and/or enhancements are needed. ## **Create a Survey Project** 1) Launch OpenRoads Designer from the desktop... 2) From the **WorkSpace** drop-down menu select the appropriate Region (**RegionA**, **RegionP** or **RegionRC**). The WorkSpace is a set of files and configuration variables that define the SDDOT settings. Selecting the appropriate Region WorkSpace is important. 3) From the WorkSet drop-down menu select Create Workset... The WorkSet sets specific standards, creates subfolders and points to the appropriate project folder within the appropriate Region folder on the U: drive (U:\regionX\prj\cntyPCN#). When a design file (dgn) is created or opened it is associated to the WorkSet that is chosen. Selecting or creating the appropriate WorkSet is important. The Create WorkSet dialog box will appear... - 4) In the **Name:** field type in the appropriate project folder name (**cnytPCN#**). This will create the project folder on the U: drive (U:\regionX\prj\cntyPCN#) along with the desired subfolders where the new survey file will reside. - 5) From the **Template:** drop-down menu select the appropriate region template (_regionX_New_Project_Template). Note: If the project folder already exists on the U: drive prior to creating a new **WorkSet** select **None** from the **Template:** drop-down menu. 6) Select the **OK** button located at the bottom of the dialog box. A new project folder along with subfolders will be created within the appropriate region folder on the U: drive (U:\regionX\prj\cntyPCN#). Note: If the project folder already exists on the U: drive prior to creating a new **WorkSet** and **None** was selected in step 5 above the subfolders will be created within the existing project folder. 7) Create a 3D Survey dgn file by selecting the **New File** button. The **New** dialog box will appear... - 8) Navigate to the **dgn** folder within the appropriate project folder within the appropriate region folder on the U: drive (U:\regionX\prj\cntyPCN#\dgn) where the new survey file will reside. - a) In the File name: field at the bottom of the dialog box type in the appropriate survey file name (PCN#_T). - b) Ensure the Save as type: is set to Micro Station DGN files (*.dgn). - c) Ensure the **Seed:** field is set to utilize the 3D seed file by selecting the **Browse** button located in the bottom right of the dialog box. The **Select Seed File** dialog box will appear... - d) highlight the **Seed3D SD_DOT Design.dgn** file. - e) Select the **Open** button located in the bottom right of the dialog box. #### --Important-- The naming convention for the survey file should follow the SDDOT standard for naming a survey CAD file outlined in **Topography Data Furnished (.dgn file)** Chapter 6 of the SDDOT Survey Manual. 9) Select the **Save** button located in the bottom right of the dialog box. The new survey dgn file will be created and opened. #### **Ribbon and Workflows** The main section of the interface is the **Ribbon** located along the top of the software and is the primary access to the **Ribbon Tabs** and **Tool Groups**. Review each area of the **Ribbon** by selecting each **Tab**. The **Ribbon** functions in a similar manner to the **Ribbon** found in Trimble Business Center and many Microsoft Office products. The **Ribbon Tabs** and **Tool Groups** are dependent on the workflow selected. For example, selecting the **OpenRoads Modeling** workflow will present a new set of **Ribbon Tabs** and **Tool Groups**. The **Survey** Ribbon Tabs and Tool Groups can be accessed by selecting **Survey** from the **Workflow drop-down** located in the upper left corner of the software. The **Ribbon** will now show the **Ribbon Tabs** and **Tool Groups** associated with the **Survey** workflow. #### **Setting the Geographic Coordinate System** 1) Select the **Survey** workflow from the **Workflow** drop-down located in the upper left corner of the software. - 2) Select the **Utilities** tab located along the top row of tabs. - 3) Select the **Coordinate System** coordinate **System** tool located within the **Geographic** tool group. The Geographic Coordinate System dialog box will appear... 4) Select the **From Library** tool The **Select Geographical Coordinate System** dialog box will appear... 5) Expand the **Favorites** folder and select the coordinate system used for the field survey and select the **OK** button located in the bottom left of the dialog box. The Geographic Coordinate System is now attached. #### --Important-- Select the same coordinate system used to setup the job file in the data collector. 6) Close the dialog by selecting the "X" located in the top right of the dialog box. #### **Setting the Drawing Scale** - 1) Select the **Drawing Production** tab located along the top row of tabs. - 2) Within the **Drawing Scales** tool group set the **Annotation Scale** drop-down to the appropriate scale for the survey file. - a) Rural set Annotation Scale to 1" = 200' - b) Suburban set Annotation Scale to 1" = 100' - c) Urban set Annotation Scale to 1" = 40' ## **Create Field Book and Import Survey Data** 1) From the **Explorer Tab** expand the **Survey** pane if not already expanded. - 2) Select the drop-down arrow next to **Survey Data**. - 3) Select the drop-down arrow next to **Default** to expand the tree to display the default survey data folders. - 4) Right click on Field Books and select New... A drop-down arrow will appear next to the **Field Books** folder indicating a new field book has been created. - 5) Expand the **Field Books** folder by selecting the drop-down arrow next to the folder to view the newly created field book named **Field Book 1**. - 6) Right click on Field Book 1 and select Properties. Field Book 1 properties will appear in the Properties Tab next to the Explorer Tab 7) In the **Name** field type in the appropriate project field book name (**PCN#**) and select the **enter key** on the keyboard. #### --Important-- The naming convention for the field book should follow the SDDOT standard for naming field books outlined in **Field book Data Furnished** Chapter 6 of the SDDOT Survey Manual. 8) Right click on the newly created project field book in the **Survey** pane and select **Import** > **File...** from the drop-down menu. The **Select file** dialog box will appear... - 9) From the File type drop-down menu select SD_DOT CSV with Notes(*.csv) - 10) Navigate to the location of the .csv file containing the field survey. - 11) Double click on the .csv file to import the field survey data into the projects field book. Repeat steps 8 through 11 until all .csv files have been imported. 12) Select the **Fit view** tool within the **View Control** toolbar located at the top of the CAD drawing space to graphically display the field survey data. ## Importing Multiple Survey Data Files - Drag and Drop Process To import multiple .csv files into the project field book use the drag and drop process after the project field book has been created in steps 1-7 above. - 1) Open windows explorer and navigate to the location of the .csv files containing the field survey. - 2) Select all the .csv files to be imported and drag-and-drop them onto the newly created project field book folder inside the Survey pane. The **Data Format** dialog box will appear... 3) Select **SD_DOT CSV with Notes** and select the Apply button The **import window** will reappear for each **.csv file** that was dragged-and-dropped into the field book folder. Simply select the **Apply** button for each file or select the **Apply All** button to import all the **.csv files** at once. 4) Select the **Fit view** tool within the **View Control** toolbar located at the top of the CAD drawing space to graphically display the field survey data. ## **Placing the Datum Note** 1) Select the **Drawing** tab located along the top row of tabs. 2) Within the **Placement** tool group select the drop-down arrow next to the **Cells** tool and select **Place Active Cell**. The Place Active Cell dialog box will appear... 3) Select the ellipsis next to the Active Cell: field. The Cell Library dialog box will appear... 4) Select **File** in the top left corner of the dialog box and select **Attach File...** from the drop-down menu. The Attach Cell Library dialog box will appear... - 5) Navigate to the **Cell** folder within the **Bentley** folder on the U: drive (U:\Bentley\CONNECT\South Dakota 2023.00\Configuration\Organization-Civil\SD_DOT\Cell). - 6) Highlight the **TOPO_Symbols.cel** and select the **Open** button located in the bottom right of the dialog box. The **Cell Library** dialog box will reappear... 7) Highlight the **DatumNote** cell from the list of cells and select the **Set Active Cell** button at the top of the dialog box. The **DatumNote** cell will populate in the **Active Cell**: field within the **Place Active Cell** dialog box. - 8) In the X Scale: field type in an appropriate scale value for the survey file and select the tab key on the keyboard to accept the value. - a. Rural = 2 - b. Suburban = 4 - c. Urban = 10 - 9) Drag the cursor into the CAD drawing space and place the DatumNote cell in the vicinity of the topo survey. 10) Double click on the datum note with the **Select Element** lool. The **Text Editor** dialog box will appear... 11) Edit the data fields within the note with the datum information used for the field survey and click in the CAD drawing space to accept the changes and update the datum note displayed in the CAD drawing. #### **Displaying the Background Map** One feature of OpenRoads Designer that is useful when processing survey data is the background map feature. This feature is a good check to insure the correct Geographical Coordinate System was set. 1) Select the drop-down arrow next to the **Select Background Map** tool within the **View Control** toolbar located at the top of the CAD drawing space. 2) Set the Map Type: to Aerial. The aerial image will display in the CAD drawing space. Setting the **Map Type:** back to **None** will turn off the background map. A Farm Service Agency (FSA) County aerial imagery can also be attached as a background map if desired. 1) Select the **Home** tab located along the top row of tabs. 2) Within the **Primary** tool group select the drop-down arrow next to **Attach Tools** and select **References**. The **References** dialog box will appear... 3) From the top left of the dialog box select **Tools** and **Attach...** from the drop-down. The **Attach Reference** dialog box will appear... - 4) From the **Look in:** drop-down at the top of the dialog box navigate to the FSA folder on the U: drive (U:\rd\Misc\Maps\FSA\2022) and select the appropriate county dgn. - 5) Set the Attachment Method to **Geographic Reprojected** from the drop-down menu on the right side of the dialog box and select the **Open** button at the bottom of the dialog box to display the county aerial image in the CAD drawing space. The FSA County aerial imagery can be clipped to only show the aerial imagery at the project location. - 6) Select the **Drawing** tab located along the top row of tabs. - 7) Within the **Selection** tool group select the drop-down next to **Fence Tools** and select **Place Fence**. The Place Fence dialog box will appear... - 8) Set the **Fence Type:** to **Block** and the **Fence Mode:** to **Inside** using the drop-down menus. - 9) In the CAD drawing space place the **Fence Block** around the topo survey. 10) From the Reference dialog box ensure the reference to be clipped is highlighted and select the Clip Reference tool. - 11) Accept the clip reference command by clicking inside the Fence Block within the CAD drawing space. - 12) Dismiss the Fence Block command by selecting the **Select Element** tool and click in the CAD drawing space. The FSA County aerial image can be turned off and on by selecting the **display toggle** within the References dialog box. ## **Reviewing and Editing Survey Data** **Point numbers**, **Field Codes**, **Elevations**, **Descriptions**, and **Icons** known as decorations in ORD can be turned on and off by using the **Decorations** tool group located under the **Analyze** tab. - 1) Select the **Analyze** tab located along the top row of tabs. - 2) Within the **Decorations** tool group select the **Names** decoration and the **Field Code** decoration to display the point names and field codes in the CAD drawing space. Coding errors can be searched for and edited. - 1) From the **Explorer** Tab select the **Survey** pane if not already selected. - 2) Expand the following folders within the **Survey** pane by selecting the drop-down arrow next to each folder. # Survey Data>Default>Field Books>(PCN#)>ALL Point Features - 3) All incorrect field codes within the field book will display in red. - 4) Select the red code errors and then select the **Details** tool located within the **Primary** tool group. 5) The **Survey Details** dialog box will appear showing the field code errors. - 6) Click in the first column with the arrowhead to zoom to the point in the CAD drawing space. - 7) Click in the **Field Code** column and fix the field code errors selecting the tab key on the keyboard after each correction. - 8) Close out of the Survey Details dialog box by selecting the "X" in the upper right of the dialog box. - 9) Repeat steps 4 through 8 for each incorrect field code shown in the **All Point Features** list within the **Survey** pane. **Join Point** (**JPT**) is a control code that connects a linear feature (line segment) from the point the control code is associated with to a point number specified following the **Join Point** control code. 1) Select one of the linear features (line segments) within the CAD drawing space to highlight the linear feature. 2) Hover over the selected linear feature (line segment) to display the **Civil Context Menu**. 3) Select the Edit Point Features The **Survey Details** dialog box will appear.... - 4) Click in the **Control Codes** field of the point to be edited to display the Control Code ellipsis. - 5) Select the **ellipsis** to display the **Control Codes** dialog box. - 6) Select the Add Add icon located at the top of the Control Codes dialog box. - 7) From the **Control Codes** drop-down menu select the **JoinPoint** Control Code. 8) In the **Value** field type in the point number to join to and select the tab key on the keyboard to accept the point number. ### --Important-- Ensure the tab key is selected after entering the point number in the **Value** field. This will ensure the cursor is cleared from the Value field allowing the point number to be saved. 9) Select the Accept Accept icon located at the top of the Control Codes dialog box to complete the command and update the graphics within the CAD drawing space. 10) Repeat steps 3 through 9 until all linear features (lines segments) have been joined. **Insert Point in Linear Feature** is a tool found within the **Civil Context Menu** that enables a point to be added into a linear feature (line segment). 1) Select the linear feature (line segment) with the **Select Element** tool. Hover over the highlighted linear feature (line segment) to display the Civil Context Menu and select the **Insert Point in Linear Feature** tool. The Insert Point in Linear Feature dialog box will appear... Follow the heads-up display on the cursor by... - 2) Selecting the linear feature (line segment) then select the point to add to the highlighted linear feature. - 3) Move the cursor between the points along the highlighted linear feature (line segment) to show the proposed linear feature (line segment) change. 4) Left click to accept the proposed change to the highlighted linear feature and add the selected point. 5) Repeat steps 1 through 4 until all points have been added. Join Linear Features is a tool found within the Civil Context Menu that enables two linear features (line segments) to be joined together into one continuous linear feature (line segment). To be able to use the Join Linear Features tool the two linear features (line segments) will first need to be converted to Point List Linear Features and then joined together using the Join Linear Features tool. 1) Select one of the linear features (line segments) to be joined within the CAD drawing space. Hover over the selected linear feature (line segment) to display the **Civil** Context Menu and select the Convert to Point List Linear Feature - 2) Repeat step 1 for the second linear feature (line segment) to be joined together. - 3) Select one of the newly converted linear features (line segments) to be joined within the CAD drawing space to highlight the linear feature (line segment). Hover over the highlighted linear feature (line segment) to display the **Civil Context Menu** and select the Join Linear Features 4) Select the second linear feature (line segment) to be joined and left click to accept. The two linear features (line segments) are now joined together. 5) Repeat steps 1 through 4 until all lines have been joined. Once all editing of the survey data has been completed check the **Survey Details Message Center** to ensure all errors have been fixed. 1) Select the **Analyze** tab located along the top row of tabs. 2) Within the **Primary** tool group select the **Details** | Details | Tool. The Survey Details dialog box will appear.... 3) Select the **Message Center** tab to display any remaining error messages within the **Description** window. Note: if no error messages display in the **Description** window all error have been fixed. Precede to the **Creating and Editing Terrain Model** section. 4) Toggle on the Icons decoration by right clicking on the first error message and select **Show Message Icons**. The Message Icons will appear in the CAD drawing space... - 5) Zoom into one of the **Message Icons** displayed in the CAD drawing space. - 6) Click on an error message in the **Survey Details Message Center** to center the error icon in the CAD drawing space. 7) Fix the error to remove the error message from the list in the **Description** window. Repeat steps 6 and 7 until all error messages are fixed and remove from the **Description** window. ## **Creating Primary Control Report** Create a report of the primary control for the project to be used by the designer to create a Control Data sheet for construction plans. 1) From the **Explorer** Tab select the **Survey** pane if not already selected. 2) Expand the following folders within the **Survey** pane by selecting the drop-down arrow next to each folder. ## Survey Data>Default>Field Books>(PCN#)>ALL Point Features 3) Left click on the **CP** point feature to highlight the control point code. 4) Select the **Details** tool located within the **Primary** tool group. 5) The **Survey Details** dialog box will appear showing the control points. - 6) Review the notes in the **Descriptions** column and make any necessary edits. - 7) Left click in the blank box to the left of the **Name** column to select all control points shown within the Survey Details dialog box. 8) Right click in the box to the left of the first control point shown within the Survey Details dialog and select Report on selected items. The Bentley Civil Report Browser will appear... 9) Expand the SD_DOT Reports folder within the list of folders shown on the left side of the Bentley Civil Report Browser by selecting the drop-down arrow next to the SD_DOT Reports folder and select the SD_DOT ControlData.xsl report to display the Control Data Report within the Bentley Civil Report Browser. 10) Select File>Save As>Web Page (*.html) in the top left of the Bentley Civil Report Browser. The Save As dialog box will appear... - 11) Navigate to the **control** folder within the appropriate project folder within the appropriate region folder on the U: drive (U:\regionX\prj\cntyPCN#\control) where the **Control Data Report** will reside. - a. In the **File name:** field at the bottom of the dialog box type in the appropriate **PCN#** followed by **control** (**PCN#control**). - b. Ensure the Save as type: is set to HTML File (*.html) - c. Select the **Save** button located in the bottom right of the dialog box. - d. Close out of the **Bentley Civil Report Browser** by selecting the "**X**" located in the top right of the browser. The **Control Data Report** has now been saved within the **control** folder within the project folder and is ready for use by the designers, contractors and surveyors. ### **Creating and Editing Terrain Model** Before creating the terrain model, it is best to **Compress** the dgn file to reduce the size of the file and remove unused element types from the dgn. - 1) Select the **File** tab located along the top row of tabs to access the **BackStage**. - 2) Select **Tools** from the list along the left side of the BackStage to display the **Tools** options. - 3) Select **Compress File** from the **Tools** option list to compress the dgn file. Note: This process may take several minutes to complete. Once the **Compress File** process is complete the message **File Compressed** will display in the **Message Center** at the bottom of the software. After compressing the dgn file the Terrain Model can now be created. - 1) From the **Explorer Tab** expand the **Survey** pane if not already expanded. - 2) Right click on the project field book in the **Survey** pane and select **Create Terrain Model...** from the drop-down menu to create the terrain model. The triangles can be displayed by changing the Feature Definition in the Terrain Model Properties by selecting the terrain model's boundary using the **Select Element** tool. Hover over the highlighted terrain model boundary to display the **Civil Context Menu.** Select the **Properties** tool within the **Civil Context Menu** to display the **Terrain Model Properties** dialog box... The terrain triangles can be displayed by selecting **Existing Triangles** from the **Feature Definition** drop-down menu. Changing the feature definition to **Existing Triangles** will keep the terrain boundary and triangles displayed while editing, modifying, and adjusting the terrain using the terrain edit tools. - 1) Select the **Terrain** tab located along the top row of tabs. - 2) Within the **Edit** tool group select the **Edit Model** tool. The Terrain Editor dialog box will appear... 3) Select the terrain model's edge and use the **Terrain Editor** tools to edit the terrain model's boundary and triangles: **Delete Vertex** use to delete an existing vertex of the terrain model's boundary **Delete Triangle** use to delete an existing triangle **Swap Line** use to swap direction of triangle **Insert Vertex** use to insert a single vertex of the terrain model's boundary **Move Vertex** use to move an existing vertex of the terrain model's boundary to a new location **Delete Triangles By Line** use to delete triangles using a line **Delete Feature** use to delete a feature from the terrain model **Delete Edit** use to undo terrain model edits ### **Review and Editing Crossing Features** **Report Crossing Features** is a tool found in the **Reporting** drop-down menu within the **Analysis** tool group under the **Terrain** tab. The **Report Crossing Features** tool provides a list of all crossing linear features (line segments) within the survey. Using the report, zoom to the crossing point of the linear features (line segments) to edit and resolve the crossing linear features (line segments). - 1) Select the **Terrain** tab located along the top row of tabs. - 2) Select **Report Crossing Features** from the **Reporting** tool drop-down menu located in the **Analysis** tool group. The Terrain Model Crossing Features dialog box will appear... - 3) Ensure the Apply Elevation Tolerance is checked. - 4) Enter in a tolerance value into the **Elevation Tolerance** field and select the enter key on your keyboard. 5) Select the terrain model's edge and left click through the on-screen heads-up prompts attached to the cursor to display the **Terrain Crossing Features Report**. - 6) Highlight one of the **Intersection Points** within the report dialog box and select the **Zoom To** button at the top of the report box to zoom to the intersection of the crossing linear features (line segments). - 7) Edit the linear features (line segments) as needed to fix the crossing. - 8) Repeat steps 6 and 7 until all crossing linear features have been resolved. #### **Annotate Notes** - 1) Select the **Drawing Production** tab located along the top row of tabs. - 2) Within the **Annotations** tool group select the **Element Annotation** tool The **Annotate Elements** dialog box will appear... - 3) Check the box next to **All Elements in Model**. - 4) Move the cursor into the CAD drawing space and left click to annotate all elements in model. Note: this process may take 30 minutes or longer to complete depending on the file size. Once the Annotate Elements process is complete the field notes will display in the CAD drawing space. ### Finalizing OpenRoads Survey File Set the terrain model's feature definition to **Existing Boundary** in the Terrain Model Properties by selecting the terrain model's boundary using the **Select Element** tool. Hover over the highlighted terrain model boundary to display the **Civil Context Menu.** Select the **Properties** tool within the **Civil Context Menu** to display the **Terrain Model Properties** dialog box... Select Existing Boundary from the Feature Definition drop-down menu. Turn off the Ground shots, Do not contour shots, and breakline levels by toggling them off in the level display dialog. - 1) Select the **Home** tab located along the top row of tabs. - 2) Within the Attributes tool group expand the levels and select Display... The Level Display dialog box will appear... - 3) Turn off the following levels by selecting the white dot in the **Used** column. - a. S_TOPO_Ground - b. **S_TOPO_DNC** - c. S_TOPO_Discon - 4) Close the **Level Display** dialog box by selecting the "X" in the top right corner of the dialog box. - 5) Select the **File** tab located along the top row of tabs to access the **BackStage** and select **Save Settings** to save the levels displayed within the CAD drawing space. # Converting OpenRoads Designer to InRoads and MicroStation After importing, editing, and processing all field book data and all modifications have been made to the Terrain model in ORD. The OpenRoads Designer file can be converted to be used for design in MicroStation SS4 and InRoads SS2. Note: Before converting the OpenRoads Designer file check to ensure the correct **Annotation Scale** was set in the **Setting the Drawing Scale** section of the OpenRoads Designer Survey Processing Guidelines. - 1) Select the terrain model's boundary using the **Select Element** tool. Hover over an element of the terrain model to display the **Civil Context Menu**. - 2) From the Export Terrain Model drop-down select InRoads DTM. The **Export Terrain** dialog box will appear... - 3) Navigate to the appropriate project folder within the appropriate region folder on the U: drive (U:\regionX\prj\cntyPCN#) where the InRoads surface model file will reside. - 4) In the **File name:** field at the bottom of the dialog box type in the appropriate surface model name (**PCN#_org**). Note: Use the under bar (_) in the file name between **PCN#** and **org** to signify the file was created in OpenRoads Designer. ### --Important-- The naming convention for the surface model should follow the SDDOT standard for naming the surface model file outlined in **Surface Data Furnished (.dtm file)** Chapter 6 of the SDDOT Survey Manual. 5) Select the **Save** button located in the bottom right of the dialog box to save the exported DTM. Turn on all levels by toggling them on in the Level Display dialog. - 6) Select the **Home** tab located along the top row of tabs. - 7) Within the **Attributes** tool group expand the levels and select **Display...** The Level Display dialog box will appear... - 8) Turn on all the levels by right clicking within the **Used** column and selecting **All On**. - 9) Close the **Level Display** dialog by selecting the "**X**" in the top right corner of the dialog box. Ensure all survey data is visible within the CAD drawing space. 10) From the **Explorer Tab** select the **Survey Pane** if not already selected. 11)Expand the following folders within the **Survey** pane by selecting the drop-down arrow next to each folder. ### Survey Data>Default>Field Books - 12) **Uncheck** and **recheck** the box next to the project field book (**PCN#**) to ensure all survey data is visible. - 13)Right click on the project field book (**PCN#**) and select **Export To > DGN Graphics...** from the drop-down menu. The Save visible survey data dialog box will appear... - 14) Navigate to the appropriate project folder within the appropriate region folder on the U: drive (U:\regionX\prj\cntyPCN#) where the MicroStation DGN Graphics file will reside. - 15)In the **File name:** field at the bottom of the dialog box type in the appropriate MicroStation DGN Graphics file name (**tPCN#_*.dgn**). - _ signifies the file was created in OpenRoads Designer - * represents one of the three design file scales and is always lowercase: - r = Rural Scale (Ensure Annotation Scale is set to 1" = 200') - s = Suburban Scale (Ensure Annotation Scale is set to 1" = 100') - u = Urban Scale (Ensure Annotation Scale is set to 1" = 40') Note: replace the * shown in the MicroStation DGN Graphics file name with one of the three design file scales letter (**r**, **s**, or **u**) ### --Important-- The naming convention for the DGN Graphics file should follow the SDDOT standard for naming the DGN Graphics file outlined in **Topography Data Furnished (.dgn file)**Chapter 6 of the SDDOT Survey Manual. - 16) Select the **Save** button located in the bottom right of the dialog box. - 17)The newly created MicroStation SS4 file (**tPCN#_*.dgn**) will automatically open in OpenRoads Designer. Note: This may take several minutes to completely load. 18)Close the newly created MicroStation SS4 file (**tPCN#_*.dgn**) by selecting **Close** within the **File** tab along the top row of tabs to exist out of the newly created MicroStation SS4 file (**tPCN#_*.dgn**). The exported MicroStation DGN Graphics file can be viewed by referencing into a MicroStation SS4 file or older MicroStation versions. ## Import InRoads FWD and DTM files into ORD - 1) Create an ORD Survey dgn file following the process outlined in the **Create a Survey Project** section of the OpenRoads Designer Survey Processing Guidelines. - 2) Set the geographic coordinate system, set the drawing scale, and create a field book following the ORD Survey Processing Guidelines. - 3) Make a copy of **PCN#.fwd** file place it into the dgn folder where the new ORD dgn file resides and rename **PCN#_T.fwd**. - 4) Open newly renamed **PCN#_T.fwd** file in Microsoft Word. - 5) Select the **Home** tab located along the top row of tabs. The **Find and Replace** dialog box will appear.... - 7) Find and replace the following codes: - a. PT PC replace with CC - b. PT CLOSE replace with CLOSE - c. ST PC replace with SC - d. **CLSRECT** replace with **CS** - e. **REFMRK** replace with **CP** - f. NOTE: This is an Edited Record replace with nothing (3 spaces between NOTE: and This) - 8) Close the **Find and Replace** dialog by selecting the "x" in the top right corner of the dialog box. - 9) Select the **File** tab located along the top row of tabs to display the backstage. - 10) From the backstage menu select **Save** to save the changes to the **PCN#_T.fwd** file. - 11)Import the **PCN#_T.fwd** file into ORD by right clicking on the newly created project field book in the **Survey Pane** and select **Import > File...** from the drop-down menu. The Select file dialog box will appear... - 12) From the **File type** pull-down menu select **InRoads FWD File(*.fwd)**. - 13) Navigate to the location of the PCN# T.fwd file containing the field survey. - 14) Double click on the **PCN#_T.fwd file** or select the **Open** button in the bottom right of the dialog box to import the field survey data into the projects field book. - 15) Select the **Fit view** tool within the **View Control** toolbar located at the top of the CAD drawing space to graphically display the field survey data. - 16) Review and edit the imported survey data following the process outlined in the **Review** and Editing Survey Data section of the ORD Processing Guidelines. After all edits to the survey data have been completed the InRoads .dtm file can now be imported. - 1) Select the **Terrain** tab located along the top row of tabs. - 2) Within the **Create** tool group select the **From File** tool. The **From File** dialog box will appear... - 3) Navigate to the location of the InRoads **PCN#org.dtm** to be imported into ORD. - 4) Double click on the PCN#org.dtm file. The Import Terrain Model dialog box will appear... - 5) Ensure the correct datum is displayed under the **Projection** tab. - 6) From the **Feature Definition** tab select the **Feature Definition** drop-down, expand the **Terrain folder** (if not already expanded) and select **Existing**. - 7) From the **Filter** tab select the **Source File Units** drop-down and select **US Survey Feet**. - 8) From the **Triangulation Options** tab select the **Import Options** drop-down and select **Import Terrain Only**. - 9) From the **Geographical Coordinate Systems** tab select the ellipsis for **Source**. The **Image Projection** dialog box will appear... - 10) Select the + icon next to the Library folder and navigate to the following folder... Projected ((northing, easting...) > North America > United States of America > South Dakota. - 11)Select the coordinate system used for the field survey and select the **OK** button located in the bottom left of the dialog box. The **Import Terrain Model** dialog box will appear... - 12) Select the **Import** button located in the bottom right of the dialog box. - 13)Once the InRoads .dtm file is imported into ORD close the **Import Terrain Model** dialog box by selecting the "**X**" in the top right corner of the dialog box. Additional edits can be made to the imported terrain model following the **Creating and Editing Terrain Model** section of the ORD Processing Guidelines if needed. 14) Annotate the notes and finalize the survey following the **Annotate Notes** and **Finalizing OpenRoads Survey File** sections of the ORD Processing Guidelines.