Roadway Inspection Recertification

Quality Control / Quality Assurance

South Dakota DOT
Connecting South Dakota and the Nation
IMPORTANT

Recertification is only for individuals currently certified and actively participating on Asphalt Concrete Projects (must attend certification class every 8 years)
DOT Employee Timesheet Information
Charge to Office Overhead
AFE – 71B6
Function - 1174
Course Materials

- QC/QA Asphalt Concrete Training Manual
- Standard Specifications for Roads and Bridges (2015 edition) - Sections 320 and 322
- South Dakota DOT Materials Manual
 - Minimum Sample & Test Requirements
- Example Problems Packet
Topics & Course Agenda

- Hot Mix Laydown/Construction
- Balance Plant, Truck & Paver
- Compaction/Density, Rollers
- Emulsion Shot Rates, Tack Rates & Flush Seal Rates
- In Place Density Cores
- Pay Factor Attributes & Spreadsheet
- Issues
- Recertification Exam
Preconstruction Meeting

- List of Certified technicians to be on Project
- Organizational chart (line of authority)
- If test strip will be used
 - Approximately 500 tons
 - All tests completed
 - Roller pattern established
- If no test strip, specify how roller pattern will be established
Sampling Asphalt Concrete from Roadway

- Discussed in SD 312 and 313
- Stratified random number to get sampling location
- QC/QA sampling is from the windrow in front of the paver
- Use a square bottom shovel
 - Remove and discard approximately top 1 foot of windrow
 - Remove and discard outside edge to create a vertical face
 - Sample from vertical face into alternating buckets
Inspection Requirements

- Certified technicians must be present at the plant and roadway whenever the plant is supplying asphalt concrete to the roadway.
Diary Requirements

- The Contractor is responsible for documenting all observations, inspection records, mixture adjustments, and test results on a daily basis.
Field observations and inspections shall be noted as they occur in a permanent duplicating field book or diary, provided by the Engineer. The roadway diaries shall include: hours paved, equipment in use, stations paved, course depth, width, crown, spread checks, tonnage, weather, and temperature of mixture delivered to the road.
Consistent Paving Operation

- Balance plant, trucks, & paver
- Unnecessary starting & stopping is not allowed
- **PROBLEM #1**
Problem #1
Balance Plant, Truck and Paver

1. The spread rate for hot mix calls for 1634 tons per mile, full width and the total pavement width is 24 feet with a two foot bevel on each side. How far should a 25 ton load go on one side?
Problem #1 - Answer

- 1634 tons per mile divided by 2 = 817 tons per side
- (5280 feet in a mile) divided by 817 tons = 6.463 feet per ton
- 6.463 ft per ton x 25 tons = 161.6 feet

Answer: a 25 ton load should go 161.6 feet on one side.
Problem #2
Paver Speed

2. Scheduled plant production is 450 tons per hour. Spread rate is 6.463 feet per ton on one side. How fast should the pave speed be (in ft/min or mi/hr) to keep the paver moving full time and eliminate starts and stops?
Problem #2 - Answer

- (450 ton per hour) x (6.463 ft per ton) = 2908 ft per hour

- (2908 ft per hour) divided by (60 min. in an hour) = 48.5 feet per minute

- OR -

- (2908 ft per hour) divided by (5280 ft in a mile) = 0.55 miles per hour
Specified Density

- Temperature, mix, air
- Number and types of rollers (establish a roller pattern using nuclear or non nuclear density device)
- Smooth surface - free from irregularities, heat checking, damage to mat
- Polymer binder: steel/pneumatic rollers
Vibratory Rollers

- Density Factors
 - Frequency and Amplitude
 - Speed
 - Number of Passes

- Ride Quality
 - Impacts per foot (Roller speed & vibrations per minute)
 - Limit starts and stops

- PROBLEMS
Problem #3
Roller Speed

3. At least 10 impacts per foot are needed to keep the pavement smooth. A roller operates at 2520 vibrations per minute. How fast should the roller go in vibratory mode? In mph, what is the top speed the roller should travel?
Problem #3 - Answer

- (2520 vibrations per minute) divided by (10 impacts per ft) = speed (252 feet per minute)
- (252 feet per minute) x (60 minutes in an hour) = (15,120 feet per hour)
- (15120 feet per hour) divided by (5280 ft in a mile) =

Answer = 2.86 miles per hour
Segregation

- Will **not** tolerate
- Stop production and correct the problem
- Segregation or excessive pulling of the mix shall warrant suspension of operations.
Segregation
Segregation
Visual Inspection

- The Engineer may reject any quantity of material that appears to be defective based on visual inspection or test results. Causes for rejection may include, but are not limited to, segregation, low temperature material, and very high or low asphalt binder content.

- Sample and test to verify defective material.
Weather & Seasonal Limitations

320.3 CONSTRUCTION REQUIREMENTS

A. Weather and Seasonal Limitations: Asphalt concrete shall not be placed when the underlying surface is wet or frozen. Asphalt concrete shall not be placed when weather conditions prevent proper handling, compaction, or finishing. The temperature and seasonal limitations are as follows:

<table>
<thead>
<tr>
<th>Compacted Thickness</th>
<th>Surface Course</th>
<th>Subsurface Course & Shoulder Course</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Seasonal</td>
</tr>
<tr>
<td></td>
<td>Temperature*¹</td>
<td>Limits</td>
</tr>
<tr>
<td>1 inch or less</td>
<td>45°F</td>
<td>May 1 to Oct. 15 (inclusive)</td>
</tr>
<tr>
<td>over 1 inch</td>
<td>40°F</td>
<td>May 1 to Oct. 15 (inclusive)</td>
</tr>
</tbody>
</table>

*¹ Minimum air and surface temperature in the shade.
Compaction Equipment

- Rollers, self propelled
- Smooth surface
- Fuel oil not allowed as release agent
- Contractor needs to monitor density
- Establish roller pattern
- Change as conditions warrant
Rubber tire roller in PG 64-28
Trucks

- No fuel oil
- Clean
- Smooth
- Release agent
- Loads shall be tarped in inclement weather conditions and when directed by the Engineer
Longitudinal joints

- On lane lines
- Lifts offset by 6 inches
- Rolled from hot side
- Longitudinal joints shall be compacted in accordance with the following:
 - For confined edges, on the first pass adjacent to the confined edge; the compaction equipment shall be entirely on the hot mat 6 in. (150 mm) from the longitudinal joint.
 - For unconfined edges, on the first pass adjacent to the unconfined edge, the compaction equipment shall extend 6 in. (150 mm) beyond the edge of the mat.
Unacceptable Longitudinal Joint
The surface, including all vertical contact faces on which the asphalt concrete is to be placed, shall be tacked according to Section 330. The tack coat shall be allowed a cure period, as determined by the Engineer, prior to asphalt concrete placement.
Surface Preparation

- Spot Leveling
- Tacking According to Sec. 330
 - Clean
 - One day of paving
- PROBLEMS
Problem #4
Tack Rate

- Emulsion rate for tack is 0.06 to 0.09 gallons per square yard at 60°F.

\[
\frac{(\text{length} \times \text{width})}{9} = \text{square yards}
\]

4. There are 392 gallons of emulsion (undiluted) used on a shot of 3298 feet by 12 feet. The emulsion temperature is 150°F. The temperature conversion is 0.97750 for 150°F to 60°F. What is the shot rate?
Problem #4 - Answer

- (392 gallons at 150° F) x 0.97750 = 383.2 gallons at 60° F
- (3298 ft) x (12 ft) divided by 9 = 4397 sq. yd.
- (383.2 gallons) divided by (4397 sq. yd.) = 0.09 gallons per sq. yd.
5. If 12,256 lbs. of emulsion in a distributor has 14,456 lbs. of water added to it, what shot rate should be used to give an undiluted shot rate of 0.05 gallons per sq. yd. for a flush seal? The weight per gallon of emulsion at 60°F is 8.328.
Problem #5 - Answer

- Weight per gallon of emulsion at 60°F = 8.328 pounds for this emulsion

\[
\frac{12,256 \text{ lbs}}{8.328} = 1471.7 \text{ gal @ 60°F}
\]

\[
\frac{14,456 \text{ lbs}}{8.328} = 1735.8 \text{ gal of water}
\]

(1471.7 gal) + (1735.8 gal) = 3207.5 total gallons

\[
\left(\frac{3207.5 \text{ gal}}{1471.7 \text{ gal}} \right) \times \left(0.05 \frac{\text{gal}}{\text{yd}^2} \right) = 0.109 \text{ gal/yd}^2
\]
Spot Leveling

- Specified roller coverage
- 3 inch max lift
- Blade laid or paver laid
Paving Sequence

- On the final surfacing lift, laydown operations may progress continuously toward or away from the plant.
 - If Engineer determines damage to the top mat is occurring, the Engineer may require laydown operations to commence from the farthest point and progress continuously toward the plant.
- Rural 2 lane - one day’s run past
- When turning lanes are present, the Contractor may alter the laydown operation. The Contractor shall submit his proposed laydown operation to the Engineer for prior approval.
Paver Feeder

- Consistent paving
- Segregation; helps control, does not correct
- Material transfer device (MTD) can be used
- The paver feeder shall pick up substantially all of the mix and feed it into the paver without segregation
The use of a paver feeder is not required on shoulders, turning lanes less than 500 ft (150 m), roadway paving less than 500 ft (150 m), and transitions into bridge decks less than 500 ft (150 m).
Self-Propelled Paver

- Shoulder included (unless less than 6’)
- Vibratory screed
- Paver extensions (used as recommended by manufacturer)
- Device to make outside bevel
Self-propelled pavers shall be equipped with a hopper having a bottom conveyor, a full width vibrating screed with heaters and be capable of spreading and finishing the mix to the specified widths, typical sections and thickness.
In-Place Density Cores

- Taken next working day
- Stratified random sampling - State determines
- Cored by Contractor - witnessed by State
- Sawed by Contractor and measured by State
- Checked by Contractor and State for damage
- Tested by State - core dry back procedure (SD 315)
- Pay Factor Attribute
Cores

- The Contractor shall perform the coring under observation by the Engineer.
- The Engineer will take immediate possession of the core samples for density testing.
- The Contractor shall fill all core holes before the end of the next working day with hot asphalt concrete and compact the mix to a density close to that of the surrounding pavement.
Be seen! Be safe!
(Use correct vests)
Core Sampling (SD 315)

- Determined by tons and offset
- 2 cores per 1000 ton
- No “buffers”
- Incomplete sublots/lots added to previous lot
- DOT 8 core dry back form
- DOT 42Q Density form
- **PROBLEM**
Example (SD 315)

Core Location (1 core per 500 ton) 2 cores per lot

1A 0 + (500 × Random #) = Core Location
1B 500 + (500 × Random #) = Core Location
2A 1000 + (500 × Random #) = Core Location
2B 1500 + (500 × Random #) = Core Location
etc. for rest of lot; *round to the nearest 0.5 foot

Offset from Centerline = (Top Driving Width) × (Random #)
1A 12 × (Random #) = Offset
etc. for rest of lot

* Adjust core locations falling within one foot of the pavement edge to one foot from the pavement edge
Problem #6
Core Locations

6. Given the following information for a 12 ft. wide pavement, determine the coring tonnage and the centerline offset for the following cores.

<table>
<thead>
<tr>
<th>Core #</th>
<th>Ton Random #</th>
<th>Offset Random #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>0.53</td>
<td>0.74</td>
</tr>
<tr>
<td>1B</td>
<td>0.63</td>
<td>0.98</td>
</tr>
<tr>
<td>2A</td>
<td>0.35</td>
<td>0.30</td>
</tr>
<tr>
<td>2B</td>
<td>0.63</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Core 1A tonnage =
Core 1A offset =
Core 1B tonnage =
Core 1B offset =
Core 2A tonnage =
Core 2A offset =
Core 2B tonnage =
Core 2B offset =

Problem #6 - Answer

1A \[0 \text{ ton} + (500 \text{ ton} \times 0.53) = 265 \text{ ton} \]
1B \[500 \text{ ton} + (500 \text{ ton} \times 0.63) = 815 \text{ ton} \]
2A \[1000 \text{ ton} + (500 \text{ ton} \times 0.35) = 1175 \text{ ton} \]
2B \[1500 \text{ ton} + (500 \text{ ton} \times 0.63) = 1815 \text{ ton} \]

1A Offset \[12 \text{ ft.} \times 0.74 = 8.9 \to 9.0 \]
1B Offset \[12 \text{ ft.} \times 0.98 = 11.8 \to 11.0^* \]
2A Offset \[12 \text{ ft.} \times 0.30 = 3.6 \to 3.5 \]
2B Offset \[12 \text{ ft.} \times 0.43 = 5.2 \to 5.0 \]

Core 1A tonnage =	265	Core 1A offset =	9.0
Core 1B tonnage =	815	Core 1B offset =	*11.0
Core 2A tonnage =	1175	Core 2A offset =	3.5
Core 2B tonnage =	1815	Core 2B offset =	5.0
In-Place Density - Specified

- Specification (Upper & Lower Spec Limits)
- “Standard” - Rice (Gmm) or (TMD) average of lot

<table>
<thead>
<tr>
<th>In Place Density (% Compaction)</th>
<th>Class Q1</th>
<th>Class Q2</th>
<th>Class Q3</th>
<th>Class Q4</th>
<th>Class Q5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>92.0% to 96.0%</td>
</tr>
</tbody>
</table>
*Very important to get 92% in-place pavement density for service life!
Independent Assurance Cores

- One core in first 5,000 ton
- Thereafter one core every 15,000 ton
- Cored by Contractor
- Within 1’ & at same offset
- Tested by DOT Region lab
Pay Factor Attributes

- Air Voids
- In Place Density

<table>
<thead>
<tr>
<th>TABLE L - PAY FACTOR ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
</tr>
<tr>
<td>Class Q1</td>
</tr>
<tr>
<td>Class Q2</td>
</tr>
<tr>
<td>Class Q3</td>
</tr>
<tr>
<td>Class Q4</td>
</tr>
<tr>
<td>Class Q5</td>
</tr>
</tbody>
</table>

b. In Place Density (% Compaction)

Class Q1	92.0% to 96.0%
Class Q2	92.0% to 96.0%
Class Q3	92.0% to 96.0%
Class Q4	92.0% to 96.0%
Class Q5	92.0% to 96.0%
Non Pay Factor Material

- Entrances, intersecting roads, spot leveling
- Most shoulder mix; check project plans
- Table usually included to show quantities
Pay Factor Spreadsheet

Project Number: Pay Factor Data for all Lots

<table>
<thead>
<tr>
<th>% Air Voids</th>
<th>% Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>96.0</td>
</tr>
<tr>
<td>-1.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Lot No. 1

<table>
<thead>
<tr>
<th>Sublot 1</th>
<th>Sublot 2</th>
<th>Sublot 3</th>
<th>Sublot 4</th>
<th>Sublot 5</th>
<th>Sublot 6</th>
<th>Sublot 7</th>
<th>Sublot 8</th>
<th>Sublot 9</th>
<th>Sublot 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Air Voids</td>
<td>% Density</td>
</tr>
</tbody>
</table>

- **Upper Quality Index (QU)**: #DIV/0!
- **Lower Quality Index (QL)**: #DIV/0!
- **% in USL (PU) from Table I**: 0
- **% in LSL (PL) from Table I**: 0
- **Quality Level (QL)**: 0
- **Pay Factor (PF)**: 0.00

Composite Pay Factor: 0.00

Lot Incentive (disincentive): $0.00

Lot No. 2

<table>
<thead>
<tr>
<th>Sublot 1</th>
<th>Sublot 2</th>
<th>Sublot 3</th>
<th>Sublot 4</th>
<th>Sublot 5</th>
<th>Sublot 6</th>
<th>Sublot 7</th>
<th>Sublot 8</th>
<th>Sublot 9</th>
<th>Sublot 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Air Voids</td>
<td>% Density</td>
</tr>
</tbody>
</table>

- **Upper Quality Index (QU)**: #DIV/0!
- **Lower Quality Index (QL)**: #DIV/0!
- **% in USL (PU) from Table I**: 0
- **% in LSL (PL) from Table I**: 100
- **Quality Level (QL)**: 0
- **Pay Factor (PF)**: 0.00

Composite Pay Factor: 0.00

Lot Incentive (disincentive): $0.00
Pay Factor Mix

- Any QL of less than 90, the composite will not exceed 1.00 pay factor
- Individual pay factor < 85 % may reject lot
- A lot with < 0.85 composite pay factor may be rejected
- Rejection by visual inspection
 - segregation
 - low temperature
 - High/low asphalt content
Special Provision for Flexible Pavement Smoothness

- Non-mainline & exclusion areas - use 10’ straightedge

- The surface of each lift shall be free of waves and other irregularities. The final lift surface shall be checked with a ten foot straightedge. The variation of the surface from the straightedge between any two contact points shall not exceed 1/4 inch (3 mm).

- Mainline - (high-speed profiler) by Special Provision
Special Provision for Flexible Pavement Smoothness

- Contractors notify Pavement Engineer two weeks prior to anticipated completion of final lift
- Pay Scale based on average IRI per 528’ lot and total number of opportunities
- Areas of Localized Roughness (ALR) table determines corrective grinding areas
Micro-Milling Special Provision
FHWA - Every Day Counts

- Intelligent Compaction (IC) & Thermal Profiling
 - Special Provision (Feb. 25, 2019)
 - 4 projects in 2019
- High Friction Surface Treatment
 - constructed in SF and RC Regions
- Warm Mix Asphalt on 20+ projects
- Safety Edge on several projects
Safety Edge
Safety Edge
Roadway Operations - Issues

- Improper tack application
- No nuclear gauge or geo gauge to check for in place density and establishing a roller pattern
- Roller operators don’t know correct longitudinal joint rolling procedure or no established roller pattern
- Extendable paver screeds operating without auger extensions or strike off plates as per manufacturer recommendation
- Paving without vibratory screed turned on
- Heat checking, segregation, or patties on mat
- Outside edge of pavement and bevel not being compacted
- Outside edge drop off is very steep (not typical designed section)
Roll the Bevel
Patties From Rubber Tired Roller On Mat

Polymer modified binder issue
Heat Checking

Can be caused by too much amplitude on vibratory roller with a thin lift, tender zone in the mix, too hot of mat or when rolling when the mat is too cold.
Tack Not Cured Before Overlay
Bleeding
Rutting
Slippage Cracks

Can be caused by no or insufficient tack
Recertification Exam

- Once the exam has started, you will have 2 hours to complete the exam.

- The Exam is open book/notes

- A score of 70% or better is required to pass the exam.