F?

Table of Contents

EXECUTIVE SUMMARY 1
CHAPTER 1 -INTRODUCTION 2
SECTION 1.1 - INTRODUCTION 2
Section 1.2 - Project Description / Study Area 3
Section 1.3 - Purpose 5
Section 1.4 - Methods and Assumptions 6
CHAPTER 2 - EXISTING AND YEAR 2035 NO-BUILD CONDITIONS 7
Section 2.1 - Traffic Capacity and Analysis Methodologies 7
Section 2.2-Existing Conditions Operational Results 7
Section 2.3 - Year 2035 No-Build Operational Results 9
CHAPTER 3 -CONCEPT DEVELOPMENT AND ANALYSIS 11
Section 3.1 - Preliminary Concept Development 11
Section 3.2 - Preliminary Concept Comparisons 11
Section 3.3 - Analysis of Alternative Scenarios 18
Section 3.4 - Recommendation of Alternatives for Future Consideration 21
CHAPTER 4 - SUMMARY AND NEXT STEPS 23
APPENDICES 24

The South Dakota Department of Transportation provides services without regard to race, color, gender, religion, national origin, age or disability, according to the provisions contained in SDCL 20-13, Title VI of the Civil Rights Act of 1964, the Rehabilitation Act of 1973, as amended, the Americans With Disabilities Act of 1990 and Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low Income Populations, 1994. To request additional information on the SDDOT's Title $\mathrm{VI} /$ Nondiscrimination policy or to file a discrimination complaint, please contact the Department's Civil Rights Office at 605-773-3540.

The preparation of this report has been financed in part through grant(s) from the Federal Highway Administration and Federal Transit Administration, U.S. Department of Transportation, under the State Planning and Research Program, Section 505 [or Metropolitan Planning Program, Section 104(f)] of Title 23, U.S. Code. The contents of this report do not necessarily reflect the official views or policy of the U.S. Department of Transportation.

APPENDICES

APPENDIX A. METHODS AND ASSUMPTIONS FOR SUB-STUDY 6
APPENDIX B1. TRAFFIC CAPACITY ANALYSIS METHODOLOGIES
APPENDIX B2. EXISTING HCS 2010 REPORTS
APPENDIX C. 2035 NO-BUILD AND BUILD OPERATIONAL ANALYSIS TECHNICAL MEMORANDUM
APPENDIX D1. PRELIMINARY CONCEPT FIGURES
APPENDIX D2. PRELIMINARY CONCEPTS TECH MEMO
APPENDIX D3. ENVIRONMENTAL CONSTRAINTS MAPS
APPENDIX E. PREDICTIVE SAFETY ANALYSIS
APPENDIX F. YEAR OF FAILURE ANALYSIS
APPENDIX G. SUB-STUDY 6 NOISE STUDY TECHNICAL REPORT
APPENDIX H. PUBLIC INVOLVEMENT
APPENDIX I. EXISTING ACCESS CONTROL FIGURES
LIST OF FIGURES
Figure 1. I-229 MIS Study Area Map 4
Figure 2. Exit 4 (Cliff Avenue) Study Area 5
Figure 3. Existing Conditions Traffic Operations Analysis 8
Figure 4. 2035 No-Build Conditions Traffic Operations Analysis 10
Figure 5. Alternative Scenario Cliff-1 15
Figure 6. Alternative Scenario Cliff-6 16
Figure 7. Alternative Scenario Cliff-7. 17

LIST OF TABLES

Table 1. Existing Conditions Deficient Locations based on Operational Analysis 7
Table 2. 2035 No-Build Conditions Deficient Locations based on Operational Analysis 9
Table 3. Preliminary Concepts Composite Comparative Assessment... 14
Table 4. Cliff Avenue Corridor 2012-2035 Predicted Build and No-Build Annual Crashes.......... 18
Table 5. Cliff Avenue Corridor Planning Horizon Crash Cost Savings.. 19
Table 6. Cliff Avenue Corridor Year of Failure ... 19
Table 7. Noise Impact Summary ... 20
Table 8. Constructability Analysis.. 21
Table 9. Alternative Scenarios Evaluation Matrix... 22

Executive Summary

The Interstate 229 (I-229) Corridor through the City of Sioux Falls is a critical traffic corridor that provides access to the expanding east side and allows access to downtown. The I-229 Major Investment Study (MIS) allows the City of Sioux Falls, the Sioux Falls Metropolitan Planning Organization, the South Dakota Department of Transportation, adjacent landowners, and area users to help determine the vision of the corridor. The I-229 Exit 4 (Cliff Avenue) Crossroad Corridor Study is a subset of the I229 MIS.

This study assesses existing and future conditions at the I-229 interchange at Exit 4 (Cliff Avenue) and along Cliff Avenue from $33^{\text {rd }}$ Street to $49^{\text {th }}$ Street. The purpose of this study is to address the traffic operations and safety concerns for this corridor. The Cliff Avenue/l-229 southbound on-ramp intersection experiences congestion in the peak traffic hours. By year 2035, congestion is anticipated to increase at this intersection.

Preliminary concepts for the Cliff Avenue interchange to address the existing and year 2035 transportation deficiencies have been developed. No improvements were needed beyond the interchange area so no corridor options were analyzed. The preliminary concepts were screened to determine which interchange concepts should be selected for further development and assessment. There were three (3) alternative scenarios identified for further development. Each of the alternative scenarios was analyzed using established evaluation criteria. The analysis of the alternative scenarios was used to determine which alternative scenarios should be recommended to advance for future studies. The following are the recommended alternative scenarios to advance:

- Cliff-1. NB Cliff to SB I-229 Loop Ramp
- Cliff-6. SPUI, $41^{\text {st }}$ Street Realigned
- Cliff-7. SPUI, SB I-229 Off-Ramp Thru \& Rights at $41^{\text {st }}$ Street

The public was involved throughout the study through public open houses, landowner meetings, and a project website. Public comments, provided in person, in writing, or electronically, were used in the development and refinement of improvement alternatives. The project's Study Advisory Team consisted of representatives from the Federal Highway Administration (FHWA), South Dakota Department of Transportation (SDDOT), Sioux Falls Metropolitan Planning Organization (MPO), City of Sioux Falls, and HDR.

CHAPTER 1 - Introduction

Section 1.1 - Introduction

The Interstate 229 (I-229) Corridor through the City of Sioux Falls carries commuters and tourism traffic, provides access to the expanding east side of this thriving community, and allows access to downtown. The I-229 Major Investment Study (MIS) allows the City of Sioux Falls, the Sioux Falls Metropolitan Planning Organization (MPO), the South Dakota Department of Transportation (SDDOT), adjacent landowners, and area users to help determine the vision of the corridor. The l-229 Exit 4 (Cliff Avenue) Corridor Study is a subset of the I-229 MIS.

An MIS provides a focused evaluation of transportation needs and issues within a corridor or sub-region. An MIS is designed to provide decision makers with information on the options available for addressing transportation challenges before making investment decisions. An MIS can lead to decisions on design concepts and scope of the investment.

The I-229 Major Investment Corridor Study (MIS) fulfills the following objectives:

1. Complete a traffic level of service analysis for both existing and future (2035) no-build conditions on the I-229 mainline, select interchanges and crossroads.
2. Complete a safety analysis of I-229 mainline, interchanges and crossroads.
3. Identify locations on I-229 not in compliance with current design standards under both the current and forecasted future traffic conditions.
4. Determine the effects of incidents on traffic operations within the I-229 corridor's area of influence.
5. Develop a long range plan consisting of feasible solutions to address the portions of the Interstate System that fail to meet current design standards, traffic level of service expectations, and/or have identifiable safety concerns under both the current and forecasted future traffic conditions.
6. Create final products for use by the SDDOT, the City of Sioux Falls and the Sioux Falls Metropolitan Planning Organization, which will guide the Department in the implementation of recommended improvements that will maximize the efficiency of the system.

The I-229 MIS has been separated into six individual sub-studies. The sub-studies include:

- I-229 Corridor Study
- I-229 Exit 3 (Minnesota Avenue) Crossroad Corridor Study
- I-229 Exit 4 (Cliff Avenue) Crossroad Corridor Study
- I-229 Exit 6 (10th Street) Crossroad Corridor Study
- I-229 Exit 7 (Rice Street) Crossroad Corridor Study
- I-229 Exit 9 (Benson Road) Crossroad Corridor Study

A map illustrating the study areas for each of the corridor studies is shown in FIGURE 1.
The remainder of this document details the transportation efforts entailed in the l-229 Exit 4 (Cliff Avenue) Crossroad Corridor Study.

Section 1.2 - Project Description / Study Area

This study assesses existing and future conditions at the l-229 interchange at Exit 4 (Cliff Avenue) and along Cliff Avenue from $33^{\text {rd }}$ Street to $49^{\text {th }}$ Street. The I-229 Exit 4 interchange and adjacent Cliff Avenue corridor is located in the southeastern portion of the Sioux Falls metropolitan area, approximately 7 miles south of the I-229/l-90 system interchange. The I-229 mainline study limits include Exit 3 (Minnesota Avenue) through Exit 5 ($26^{\text {th }}$ Street). The Cliff Avenue study limits include $33^{\text {rd }}$ Street through $49^{\text {th }}$ Street.

An illustration of the study area is shown in FIGURE 2. There are 5 study area intersections located on Cliff Avenue, including:

- $33^{\text {rd }}$ Street
- I-229 southbound off-ramp/41 ${ }^{\text {st }}$ Street
- I-229 southbound on-ramp
- I-229 northbound ramp terminal
- $49^{\text {th }}$ Street

Figure 1. I-229 MIS Study Area Map

- Exit 9 (Benson Rd) Study Intersection (Additional)

Figure 2. Exit 4 (Cliff Avenue) Study Area

Section 1.3 - Purpose

The purpose of this study is to address the traffic operations and safety concerns at the I-229/Exit 4 (Cliff Avenue) interchange and along the Cliff Avenue corridor which serves the growing east side of Sioux Falls, South Dakota. The following is a list of specific issues/needs that were identified for this study:

- Congestion at the Cliff Avenue / I-229 interchange
- Pedestrian / Multimodal safety in the vicinity of Lincoln High School and the Sioux Falls trail system
- Geographic constraints on corridor performance, including the Big Sioux River, Tuthill Park, and Spencer Park

The primary goal of this study is to develop feasible solutions to address the identified issues and needs. The solutions will follow current design standards and provide acceptable traffic level of service (LOS) and operations under both current and future traffic conditions.

Section 1.4 - Methods and Assumptions

The SDDOT provides a Methods and Assumptions template for SDDOT planning studies. This template guided the development of a specific document for the I-229 Exit 4 (Cliff Avenue) Crossroad Corridor Study. This Methods and Assumptions document is used to outline technical methodologies and key assumptions used in the course of the study. The Methods and Assumptions document can be found in APPENDIX A. Methods and Assumptions for Sub-Study 3.

CHAPTER 2 - Existing and Year 2035 No-Build Conditions

Assessment of existing conditions and 2035 no-build conditions is based on traffic data collected and developed as part of the overall I-229 MIS. Traffic data applicable to Exit 4 (Cliff Avenue) includes base mapping, existing and 2035 no-build traffic volume data and crash data. The existing conditions analysis is representative of year 2012. Content in this chapter focuses on analysis of the Exit 4 (Cliff Avenue) interchange and corridor study area.

Section 2.1 - Traffic Capacity and Analysis Methodologies

Existing (year 2012) and 2035 no-build conditions operational analysis included the analysis of 4 signalized intersections, 1 unsignalized intersection, 2 basic freeway segments, and 2 weave segments. All locations were analyzed for the AM peak hour (7:15-8:15 AM) and PM peak hour (4:30-5:30 PM). The operational analysis results include:

- Ramp terminal intersections
- Arterial intersections
- Basic Freeway and Weave Areas

Analysis methodologies utilized for determining traffic capacities are outlined in APPENDIX B1. TRAFFIC CAPACITY ANALYSIS METHODOLOGIES. Level of service (LOS) is based on procedures from the Highway Capacity Manual (HCM 2010).

Section 2.2 - Existing Conditions Operational Results

The existing conditions LOS results for all locations are depicted in FIGURE 3.
This existing conditions analysis found that the freeway and ramps are operating at a desirable LOS of C or better throughout the study area. One ramp terminal intersection has degraded beyond the acceptable threshold of LOS C. All arterial intersections are operating at a desirable LOS of D or better. TABLE 1 highlights the intersections that do not meet the project specific LOS thresholds. The existing traffic analysis reports can be found in APPENDIX B2. EXISTING HCS 2010 REPORTS.

Table 1. Existing Conditions Deficient Locations Based on Operational Analysis

LOCATION	AM	PM
Cliff Avenue \& l-229 SB On-Ramp - Worst stop-controlled movement LOS		LOS D

Note: Acceptable threshold is LOS D for arterial intersections and LOS C for freeway, ramps, and ramp terminal intersections.

Section 2.3 - Year 2035 No-Build Operational Results

Traffic forecasts for year 2035 for the No-Build condition were established as part of the overall I-229 MIS.

The balanced set of year 2035 No-Build volumes is included with the results of the Future No-Build analysis.

A detailed report of the future No-Build operations can be found in APPENDIX C. 2035 No-Build and Build Operational Analysis Technical Memorandum.

The year 2035 conditions analysis found that two ramp terminal intersections will degrade beyond the threshold of LOS C and one arterial intersection will degrade beyond the threshold of LOS D.

TABLE 2 highlights intersections that will not meet the project specific LOS thresholds.
Final operational analysis LOS results for year 2035 No-Build AM and PM peak hour can be found in graphical format in FIGURE 4 for study intersections, as well as basic freeway and weaving segments.

Table 2. 2035 No-Build Conditions Deficient Locations Based on Operational Analysis

LOCATION	AM	PM
Cliff Avenue \& I-229 SB On-Ramp - Worst stop-controlled movement LOS	LOS D	LOS F
Cliff Avenue \& I-229 NB Ramp Terminal	LOS D	
Cliff Avenue \& 49 th Street	LOS E	

Note: Acceptable threshold is LOS D for arterial intersections and LOS C for freeway, ramps, and ramp terminal intersections.

CHAPTER 3 - Concept Development and ANALYSIS

The transportation deficiencies identified in the Existing Conditions and 2035 No-Build Conditions analysis were taken into consideration along with input from the Study Advisory Team (SAT) in order to develop potential roadway improvement projects. A multi-step process was used to develop, analyze and refine potential concepts in order to identify the recommended concepts for future consideration.

Section 3.1 - Preliminary Concept Development

Prior to development of the preliminary concepts, a Public Open House was held October $30^{\text {th }}, 2013$ to introduce and receive feedback regarding the I-229 MIS. The Public Open House discussed the needs and goals for each individual corridor study and received feedback from the public. A summary of the public involvement process and meeting notes can be found in APPENDIX H. PUBLIC INVOLVEMENT.

The first step in the concept development phase was to identify preliminary concepts to potentially address the deficiencies identified in the Existing Conditions and 2035 No-Build Conditions analysis.

These concepts were developed with SAT input during concept workshops in April and June of 2016. Preliminary concepts for the Exit 4 (Cliff Avenue) interchange included:

- Cliff-1. NB Cliff to SB I-229 Loop Ramp
- Cliff-2. NB/SB Cliff to SB I-229 Loop Ramp, Eliminate SB Diagonal Ramp
- Cliff-4. Diamond Interchange, $41^{\text {st }}$ Street Realigned
- Cliff-6. SPUI, $41^{\text {st }}$ Street Realigned
- Cliff-7. SPUI, SB I-229 Off-Ramp Thru \& Rights at $41^{\text {st }}$ Street
- Cliff-8. Tight Diamond Interchange, $41^{\text {st }}$ Street Realigned

Preliminary Concept figures are shown in APPENDIX D1. PRELIMINARY CONCEPT Figures.

Section 3.2 - Preliminary Concept Comparisons

The preliminary concepts were evaluated through a screening process in order to identify concepts to be carried forward in the study and further refined and analyzed. Each of the preliminary concepts was evaluated using criteria in four categories. The four category types evaluated for each preliminary concept identified for further consideration included Property Impacts, Traffic Operations, Environmental Review and Construction Costs as described in the next sections. Additional detail may be found in Appendix D2. Preliminary Concepts Tech Memo.

Property Impacts

An approximate footprint for each preliminary concept was developed by setting impact limits. The portion of each property parcel intersected by the impact limits that was inside of the impact limit was assumed to be an acquisition. If an acquisition impacted a structure, or rendered a parcel unusable in the opinion of the consultant (e.g. a large part of a parking lot was acquired), the entire structure or parcel was assumed to be an acquisition.

A unit price of $\$ 5$ per square foot of acquisition area was applied to estimate the cost of property impacts. The total estimated cost of property impacts for a concept is the total impacted area multiplied by $\$ 5$ per square foot plus the assessed value of structures impacted (from the Minnehaha County Assessor's website) multiplied by 1.5 (to estimate the fair market value of impacts).

Although not included in the assessment of property impacts for the concepts, the existing access control limits along l-229 at each of the corridor sub-study interchanges were researched at the request of the SAT and are depicted in a set of figures in APPENDIX I. EXisting Access Control Figures.

Traffic Operations

The traffic operations assessment for each preliminary concept was developed using output from Highway Capacity Software 2010 (HCS 2010) version 6.50. The 2035 No-Build condition was used as a baseline model to which output from each preliminary concept was compared.

For each concept, the Measures of Effectiveness (MOEs) were pulled for both AM and PM peaks and then averaged. The averaged MOEs from each concept run were compared to the No-Build MOEs and a percent change calculated between each concept and No-Build. The following MOEs were used to compare the concepts:

- Queues
- Delay
- Travel Time

The traffic operations results can be found in APPENDIX D2. PRELIMINARY CONCEPTS TECH MEMO.

Environmental Review

A desktop review of available data was analyzed against the preliminary concepts. Items that could require further analysis at the time of future project initiation were identified for issues that separate project concepts. Later phases in potential project corridor planning will require environmental documentation if federal funds are used, and would require analysis of additional resources such as environmental justice and noise. The environmental review included the following elements:

- Archaeological and Historical Resources
- Wetlands and Waters
- Threatened and Endangered Species
- Section 4(f) and Section 6(f) Properties
- Floodplain
- Regulated Materials

APPENDIX D3. ENVIRONMENTAL CONSTRAINTS MAPS identify constraints in the study area such as schools, bike trails, rivers, wetlands, parks, and floodplain.

Construction Costs

Pavement area costs are assumed to include curb, shoulder, median, sidewalk, and drainage items. For cost estimating purposes, all retaining walls were assumed to have a constant height of 12 feet over their entire estimated length. Relocation costs are not included in the ROW cost estimates.

The comparative assessment of the preliminary concepts is summarized in TABLE 3.

Preliminary Concept Comparison

The preliminary concepts and the concept evaluation were presented to the business /land owners and public through a Stakeholders Meeting and Public Open House on June $22^{\text {nd }}, 2016$. A summary of the public involvement process and meeting notes can be found in Appendix H. Public Involvement.

Based on the preliminary concept comparison and public feedback, the concepts were screened through a workshop with the SAT in June 2016 to determine which concepts should be selected as alternative scenarios for further development. The alternative scenarios selected for further development are as follows:

- Cliff-1. NB Cliff to SB I-229 Loop Ramp
- Cliff-6. SPUI, $41^{\text {st }}$ Street Realigned
- Cliff-7. SPUI, SB I-229 Off-Ramp Thru \& Rights at $41^{\text {st }}$ Street

Alternative scenario figures are shown in FIGURES 5 THROUGH 7.

Table 3. Preliminary Concepts Composite Comparative Assessment

Preliminary Concept		Traffic Assessment			Environmental Impacts	Cost	ROW (acre)
		Queues	Delay	Travel Time			
Cliff-1	NB Cliff to SB I-229 Loop Ramp Auxiliary Lane Add	Neutral	Good	Neutral	Low	\$11,219,600	1.1
Cliff-2	NB/SB Cliff to SB I-229 Loop Ramp, Eliminate SB Diagonal Ramp	Neutral	Neutral	Neutral	Low	\$7,490,000	1.1
Cliff-4	Diamond Interchange - 41st Street Realigned to High School	Good	Very Good	Neutral	Low	\$7,850,000	1.8
Cliff-6	SPUI Interchange - 41st Street Realigned to Pam Road	Good	Very Good	Neutral	Low	\$24,810,000	3.5
Cliff-7	SPUI Interchange - SB I-229 Off Ramp Thru \& Right Turn Lanes at 41st Street Intersection	Neutral	Good	Neutral	Low	\$19,850,000	0.4
Cliff-8	Tight Diamond Interchange - 41st Street Realigned to High School	Good	Very Good	Neutral	Low	\$12,690,000	1.9

Section 3.3 - Analysis of Alternative Scenarios

The alternative scenarios were evaluated through a screening process in order to identify alternatives recommended to be considered in future studies. Each of the alternative scenarios were evaluated using additional evaluation criteria including:

- Predictive Crash
- Traffic Operations
- Year of Failure
- Noise
- Constructability

Predictive Crash Analysis

Predictive crash analysis was conducted for freeway ramps and the ramp terminal intersections. The predictive safety analysis was based on principles and methods of the Highway Safety Manual (HSM).

A comparative analysis of the predicted crashes anticipated between the Existing (Year 2012) condition and the Future No-Build (Year 2035) condition, as well as a comparative analysis between No-Build and Build alternatives for each sub-study was developed.

The predicted annual crash frequencies for the No-Build and Build alternatives (2012 to 2035) are presented in TABLE 4 along with the breakdown of Fatal + Injury ($\mathrm{F}+\mathrm{I}$) and Property Damage Only (PDO) crashes.

Table 4. Cliff Avenue Corridor 2012-2035 Predicted Build and No-Build Annual Crashes

Planning horizon crash cost savings were calculated for the Build alternatives and are shown in TABLE 5.

Table 5. Cliff Avenue Corridor Planning Horizon Crash Cost Savings

ALTERNATIVE	TOTAL USER COST 1	USER COST SAVINGS
No-Build	$\$ 42,900,000$	$\$ 3$
Cliff-1	$\$ 39,100,000$	$\$ 3,800,000$
Cliff-6	$\$ 32,900,000$	$\$ 10,000,000$
Cliff-7	$\$ 32,600,000$	$\$ 10, \mathbf{3 0 0}, 000$

${ }^{1}$ Total User Cost - The discounted, monetized safety cost from the crashes totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$).
${ }^{2}$ User Cost Savings - The discounted, monetized safety benefit from the crashes reduced by a scenario (compared to a baseline of No-Build) totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$).

Additional detail from the Predictive Crash Analysis can be found in APPENDIX E. Predictive Safety Analysis.

Traffic Operations Analysis

Traffic operations were analyzed for each alternative scenario using HCS 2010. A detailed report of the alternative scenario operations can be found in APPENDIX C. 2035 No-Build and Build Operational Analysis Technical Memorandum.

For all alternative scenarios, the ramp terminals operate at an acceptable LOS of C or better and the signalized arterial intersections operate at an acceptable threshold of LOS of D or better.

Year of Failure Analysis

A year of failure analysis was conducted for the alternative scenarios' interchanges in order to identify the year beyond the Future / Design year (2035) when traffic operations fail to meet acceptable criteria. Projected traffic volumes beyond year 2035 were developed using straight line extrapolation between year 2012 adjusted peak hour volumes and year 2035 adjusted peak hour volumes. Potential years of failure were evaluated in 5 -year increments up to the identified year of failure.

The resulting year of failure for the No-Build and Build alternatives is shown in TABLE 6.
Table 6. Cliff Avenue Corridor Year of Failure

ALTERNATIVE	YEAR OF FAILURE
No-Build	Already Failing
Cliff-1	2050
Cliff-6	2055
Cliff-7	2045

Additional detail from the Year of Failure Analysis can be found in APPENDIX F. YEAR OF FAILURE ANALYSIS.

NOISE ANALYSIS

A traffic noise analysis was conducted along the Cliff Avenue corridor's area of influence for the three alternative scenarios. The analysis included traffic noise monitoring and modeling. HDR used the FHWA Traffic Noise Model (TNM), Version 2.5, to evaluate projected traffic noise levels under both existing conditions and "Build" alternatives. Basic model inputs are:

- Existing and Preliminary project concept and geometry
- 2012 and 2035 traffic volumes in the study area
- The operational speed for I-229: 65 miles per hour (mph); arterial streets: $30-45 \mathrm{mph}$

Traffic noise impacts were identified in accordance with SDDOT Noise Analysis and Abatement Guidance (July 13, 2011), which is intended to supplement FHWA traffic noise and abatement regulations and guidance. The Guidance provides procedures for noise studies and noise abatement measures to help protect the public health and welfare, to supply noise abatement criteria, and to establish requirements for traffic noise information to be given to those officials who have planning and zoning authority.

Noise abatement measures are considered when predicted traffic noise levels approach or exceed the Noise Abatement Criteria (NAC), or when the predicted traffic noise levels substantially exceed existing noise levels.

TABLE 7 shows the number of traffic noise impacts predicted under each alternative.
Table 7. Noise Impact Summary

ALTERNATIVE	APPROACH/ EXCEED NAC	SUBSTANTIALLY EXCEED	TOTAL RECEPTORS AFFECTED
Existing	1	0	1
Cliff-1	11	0	11
Cliff-6	19	0	19
Cliff-7	8	0	8

Potential noise abatement measures could be considered for all alternative scenarios. Further investigation into the feasibility and reasonability (noise reduction goal, costeffectiveness, viewpoints of benefited receptors) would need to occur once a preferred alternative is selected.

A detailed technical memorandum describing the noise analysis can be found in APPENDIX G. Sub-Study 3 Noise Study Technical Report. This memo includes a discussion of the conceptual feasibility of noise mitigation options in areas where future noise levels exceed state and federal criteria.

CONSTRUCTABILITY

A constructability analysis was conducted for the alternative scenarios in order to assess potential construction phasing, maintenance of traffic and general timeframe.

TABLE 8 shows construction analysis results predicted for each alternative.
Table 8. Constructability Analysis

ALTERNATIVE	MAINTENANCE OF TRAFFIC COMPLEXITY	ALLOWS FOR PHASED CONSTRUCTION	ESTIMATED CONSTRUCTION TIME FRAME (MONTHS)
Cliff-1	Low	Yes	8
Cliff-6	High	Yes	12
Cliff-7	Medium	Yes	12

It is anticipated that all of the alternative scenarios will allow for phased construction. Further construction analysis would need to occur during future studies and continue through the design process.

Section 3.4 - Recommendation of Alternatives for Future Consideration

The analysis of alternative scenarios along with other evaluation criteria were used to develop an evaluation matrix to compare the alternative scenarios. The alternative scenarios were compared using the following criteria categories:

- Driver/Public Perception
- Environmental
- Construction Impacts
- Pedestrians
- Traffic Operations \& Safety
- Cost
- Property Impacts

The alternative scenarios evaluation matrix was reviewed with the SAT during a workshop in September 2016 to determine which alternative scenarios should be recommended to advance for future studies.

The evaluation matrix for the alternative scenarios is summarized in TABLE 9.
Based on the evaluation, all three (3) alternative scenarios are recommended to advance for future studies along with No-Build. The alternative scenarios are as follows:

- Cliff-1. NB Cliff to SB I-229 Loop Ramp
- Cliff-6. SPUI, $41^{\text {st }}$ Street Realigned
- Cliff-7. SPUI, SB I-229 Off-Ramp Thru \& Rights at $41^{\text {st }}$ Street

Option	Description		Construction Impacts		Traffic Operations \& Safety											Property Impacts				Environmental	Pedestrians	Cost	Recommendation
			$\stackrel{5}{8}$	<	SecNeh	Year	$\begin{gathered} \hline \operatorname{LOS} \\ A M / P M \end{gathered}$	Intersection Delay AM / PM (sec)	$\begin{gathered} \text { LOS } \\ A M / P M \end{gathered}$	Intersection Delay AM / PM (sec)	$\left\|\begin{array}{c\|} \hline \operatorname{LOS} \\ A M / P M \end{array}\right\|$	Intersection Delay AM / PM (sec)	$\left\|\begin{array}{c} \operatorname{LOS} \\ A M / P M \end{array}\right\|$	Intersection Delay AM / PM (sec)	M \$	$\frac{1}{2}$					$\begin{aligned} & \text { ®ँ } \\ & \hline 0 \end{aligned}$	M \$	
No-Build		Good	N/A	N/A	48.2	<2035	D/B	38.1/15.9	B/C	19.7/27.4	E/b	$62.2 / 12.2$	B/C	17.7/21.9	-	N/A	N/A	N/A	N/A	Low	Yes	N/A	
Cliffe-1	NB Cliff to SB I-229 Loop Ramp	Good	Low	Yes	39.5	2050	B/B	16.8 / 18.2	C/C	26.9 / 30.8	C/B	30.4 /11.6	C/C	$26.2 / 21.7$	\$3.8	0	2	0	1.1	Low	Yes	\$11.6	Advance
Cliff-6	SPUI + 41st Realigned North	Fair	High	Yes	27.4	2055	C/C	28.5/26.4	N/A	N/A	C/B	32.1/10.6	B/C	18.7/21.3	\$10.1	1	9	3	3.4	Low	Yes	\$25.0	Advance
Cliff-7	SPUI + SB I-229 Off Ramp Thru \& Right Turn Lanes at 41 st St	Poor	Medium	Yes	38.8	2045	c/C	21.8/26.1	C/C	20.3/26.1	C/A	32.1 / 8.4	B/C	17.5/21.6	\$10.4	0	1	0	0.4	Low	Yes	\$20.3	Advance

Year of Failure and Predictive Safety analysis include ramp terminal intersections and in general do not include non-ramp terminal intersections.
${ }^{2}$ Planning Horizon Cost Savings - The discounted, monetized safety benefit from the crashes reduced by a scenario (compared to a baseline of No-Build) totaled for all years in the period 2012-2035.

CHAPTER 4 - Summary and Next Steps

The I-229 Exit 4 (Cliff Avenue) Crossroad Corridor Study:

- Identified existing and future traffic and safety issues and needs on the Study Area roadways.
- Developed reasonable improvement concept options and alternative scenarios to address the traffic and safety needs.
- Evaluated the benefits and drawbacks of each of the concept options and alternative scenarios.
- Identified alternative scenarios for further consideration in future studies. The alternative scenarios are as follows:
- Cliff-1. NB Cliff to SB I-229 Loop Ramp
- Cliff-6. SPUI, $41^{\text {st }}$ Street Realigned
- Cliff-7. SPUI, SB I-229 Off-Ramp Thru \& Rights at $41^{\text {st }}$ Street

These are the anticipated next steps for the projects associated with the l-229 Exit 4 (Cliff Avenue) Crossroad Corridor Study:

- Refine the implementation timeframe and funding responsibility. The I-229 Exit 4 (Cliff Avenue) Corridor was identified as a medium priority in the overall I-229 MIS.
- Add projects, as necessary, to the MPO fiscally constrained Long Range Transportation Plan.
- Fund individual projects in the State 8-year Improvement Program or City 5-year Improvement Program.
- Prepare an Interchange Modification Report for the I-229/Cliff Avenue interchange.
- Prepare an environmental document for each project in accordance with National Environmental Policy Act and other applicable federal and state regulations. This step includes further design refinement and in-depth analysis of each option. The No-Build option will be considered as well as all of the options identified in this Corridor Study.
- Select a preferred option for each project.
- Acquire right-of-way (where necessary).
- Complete final design plans.
- Construct project.

Appendices

Appendix A. Methods and Assumptions for Sub-Study 6
Appendix B1. Traffic Capacity Analysis Methodologies
Appendix B2. Existing HCS 2010 Reports
Appendix C. 2035 No-Build and Build Operational Analysis Technical MEMORANDUM

Appendix D1. Preliminary Concept Figures
Appendix D2. Preliminary Concepts Tech Memo
Appendix D3. Environmental Constraints Maps
Appendix E. Predictive Safety Analysis
Appendix F. Year of Failure Analysis
Appendix G. Sub-Study 6 Noise Study Technical Report
Appendix H. Public Involvement
Appendix I. Existing Access Control Figures

Methods and Assumptions Document

- Original M\&A
- Appendices
- Meeting Minutes
- Highway Capacity Software Analysis Procedures for a Diverging Diamond Interchange (DDI)
- Crash Prediction Analysis Procedures for Diverging Diamond Interchange (DDI), Single-Point Urban Interchange (SPUI), and Two-Lane Loop Ramp

Methods \& Assumptions Meeting Documentation

1. Methods and Assumptions Cover Page

I-229 Major Investment Corridor Study: Sub-Study \#6- Cliff Avenue Original

```
To: Study Advisory Team (SDDOT, FHWA, City of Sioux Falls)
From: Dave Meier, HDR
Project: I-229 Major Investment Corridor Study
    Brian Ray, HDR
    Courtney Sokol, HDR
    Jon Markt, HDR
```

CC: File

Date: March 15, 2016 Job No: 207030

Methods and Assumptions Document

This Methods and Assumptions document was developed as a summation of the Methods and Assumptions Meeting held on March 7, 2016, with representatives from the South Dakota Department of Transportation (SDDOT), Federal Highway Administration (FHWA), City of Sioux Falls, Sioux Falls MPO, and HDR. This document is intended to serve as a historical record of the process, dates, and decisions made by the study team representatives for the I-229 Major Investment Corridor Study: Sub-Study \#6- Cliff Avenue.

2. Stakeholder Acceptance Page

The undersigned parties concur with the Methods and Assumptions for the I-229 Major Investment Corridor Study: Sub-Study \#6 as presented in this document.

SDDOT:

Signature
Title

Date

FHWA:
Signature
Title

Date

Notes:
(1) Participation on the Study Advisory Team and/or signing of this document does not constitute approval of the I-229 Major Investment Corridor Study: Sub-Study \#6 Final Report or conclusions.
(2) All members of the Study Advisory Team will accept this document as a guide and reference as the study progresses through the various stages of development. If there are any agreed upon changes to the assumptions in this document a revision will be created, endorsed and signed by all the signatories.

3. Introduction and Project Description

Project Background and Understanding
Sub-Study 6 will analyze existing and future conditions at the I-229 interchange at Exit 4 (Cliff Avenue) and along Cliff Avenue from $33^{\text {rd }}$ Street to $49^{\text {th }}$ Street. The study will conduct an interchange options study for the I-229 Exit 4 interchange.

Location

The I-229 Exit 4 interchange and adjacent Cliff Avenue corridor is located in the eastern portion of the Sioux Falls metropolitan area, approximately 7 miles south of the I-229/I90 systems interchange. The mainline interstate study limits include Exit 3 (Minnesota Avenue) through Exit 5 ($26^{\text {th }}$ Street). The Cliff Avenue study limits include $33^{\text {rd }}$ Street to $49^{\text {th }}$ Street.

An illustration of the Sub-Study 6 study area is shown in Section 4 (Study Area) of this report.

Need for Study

The study team has determined the following needs for this specific study:

- Congestion at the Cliff Avenue / I-229 interchange.
- Pedestrian / Multimodal safety in the vicinity of Lincoln High School and the Sioux Falls trail system.
- Geographic constraints on corridor performance, including the Big Sioux River, Tuthill Park, and Spencer Park.

Study Schedule

Date	Task/Event
February 2016	Notice to Proceed
March- April 2016	Methods \& Assumptions Documentation Preliminary Concepts Identification
May 2016	Conceptual Design of Reconfiguration Options for the I-229 Exit 4 Interchange Conceptual Design of Cliff Avenue Corridor Improvements
June 2016- November 2016 Stakeholder Meetings (July 2016) Public Meeting \#2 (Cliff/ Rice Preliminary Concepts) July 2016) MPO Meeting (Scenario Building Presentation) Determination of Interchange and Corridor Build Scenarios Traffic and Operations Analysis of Build Scenarios Predictive Crash Analysis of Build Scenarios Noise Analysis of Build Scenarios Constructability Analysis of Build Scenarios Recommendations December 2016- Sub-Study 6 Report Documentation Public Meeting \#3 (Draft Report Stage) MPO Meeting (Final Recommendations Presentation)	

Facilities Affected by the Study

Modifications to the I-229 Exit 4 (Cliff Avenue) interchange and adjacent Cliff Avenue corridor would have the potential to affect:

- The intersections on Cliff Avenue near I-229.
- The adjacent parallel corridor providing access to I-229 at Exit 3 (Minnesota Avenue).
- The adjacent parallel corridor providing access to I-229 at Exit 5 ($26^{\text {th }}$ Street).
- The adjacent perpendicular corridors of $41^{\text {st }}$ and $49^{\text {th }}$ Streets.

Previous Studies

The following previous studies will be reviewed during the course of this study:

- Direction 2035, Sioux Falls MPO Long-Range Transportation Plan (LRTP)
- http://www.siouxfalls.org/~/media/Documents/planning/longrange/lrtp/2035 Irtp/adopted Irtp rev120210.pdf
- Sioux Falls Comprehensive Development Plan
- http://www.siouxfalls.org/~/media/Documents/planning/shape sf/chaptersmaps/Chapter 1 r112111.pdf
- Sioux Falls Transit Development Plan 2011-2015
- http://www.siouxfalls.org/~/media/Documents/planning/longrange/2011 2015 Transit Development Plan.pdf
- 2007 Sioux Falls Bicycle Plan
- http://www.siouxfalls.org/~/media/Documents/planning/transportation/bicycle/ Bicycle Plan Final.pdf
- The Sioux Falls MPO Multi-Use Trail Study
- https://www.railstotrails.org/resourcehandler.ashx?id=4551
- Sioux Falls Major Street and Access Management Plan
- http://www.siouxfalls.org/~/media/Documents/planning/transportation/longrange/majorstreetplanmediumfinal\ pdf.pdf
- 2010 Decennial Interstate Corridor Study and 2000 Decennial Interstate Study
- ITS Studies from City of Sioux Falls and SDDOT

Study Advisory Team Members

A Study Advisory Team has been formed to guide the study through completion. The Study Advisory Team is comprised of representative parties of the SDDOT, FHWA and City of Sioux Falls. Members of the Study Advisory Team are:

Shannon Ausen	City of Sioux Falls - Public Works
Mike Behm	SDDOT - Planning \& Engineering
Christina Bennett	SDDOT - Operations Support
Jeff Brosz	SDDOT - Transportation Inventory Management
Andy Vandel	SDDOT - Project Development (Safety)
Joel Gengler	SDDOT - Right of Way
Amber Gibson	Sioux Falls MPO
Kevin Goeden	SDDOT - Bridge Design
Steve Gramm	SDDOT - Project Development (Planning)
Heath Hoftiezer	City of Sioux Falls - Public Works
Mark Hoines	FHWA
Dave Huft	SDDOT - Research
Bruce Hunt	FHWA
Scott Jansen	SDDOT - Mitchell Region
Lt. Jeff DeVaney	South Dakota Highway Patrol
Ryan Kerkvliet	Sioux Falls MPO - Citizens Advisory Committee
Tom Lehmkuhl	SDDOT - Administration/Environmental
Pete Longman	SDDOT - Road Design
Ron McMahon	FHWA
Paul Nikolas	SDDOT - Road Design
Brad Remmich	SDDOT - Project Development (Planning)
Craig Smith	SDDOT - Mitchell Region

Additional team members may be added as the study progresses.

4. Study Area

The study area for Sub-Study 6 was defined by the Study Advisory Team and is illustrated in this report for documentation. The study area contains Cliff Avenue from $33^{\text {rd }}$ to $49^{\text {th }}$ Street. Freeway operations will be conducted during Sub-Study 1 and will also be reported in Sub-Study 6 for freeway locations from Exit 3 (Minnesota Avenue) to Exit 5 ($26^{\text {th }}$ Street). The following graphic shows the study area and identifies each of the study intersections.

Sub-Study 6 Study Area

Cliff Avenue (Exit 4) Intersections:

- Cliff Avenue \& 33rd Street
- Cliff Avenue \& I-229 Southbound off-Ramp/ 41st Street
- Cliff Avenue \& I-229 Southbound on-Ramp
- Cliff Avenue \& I-229 Northbound Ramps
- Cliff Avenue \& 49th Street

Study Basic Freeway Areas (See also Note 1 below for designated analysis areas as potential Freeway Weave Areas for segments including auxiliary lanes):

- I-229 Northbound between Minnesota Avenue (Exit 3) and Cliff Avenue (Exit 4) ${ }^{1}$
- I-229 Northbound between Cliff Avenue (Exit 4) and $26^{\text {th }}$ Street (Exit 5) ${ }^{1}$
- I-229 Southbound between $26^{\text {th }}$ Street (Exit 5) and Cliff Avenue (Exit 4) ${ }^{1}$
- I-229 Southbound between Cliff Avenue (Exit 4) and Minnesota Avenue (Exit 3) ${ }^{1}$

1 Segment will be evaluated using Highway Capacity Manual (HCM) 2010 procedures to determine if the segment meets the criteria for a weave
segment. If the segment meets the weave segment criteria the segment will be analyzed as a Freeway Weave Area and not a Basic Freeway Area

Study Mainline Freeway Areas (Crash Prediction)

- I-229 Northbound \& Southbound
- Between mile marker 3 and mile marker 4.5

Study Service Interchange Areas (Crash Prediction)

- Cliff Avenue (Exit 4)

Study Intersections (Crash Prediction)

- Cliff Avenue \& I-229 Southbound off-Ramp/41 ${ }^{\text {st }}$ Street
- Cliff Avenue \& I-229 Southbound on-Ramp
- Cliff Avenue \& I-229 Northbound Ramps / Cleveland Avenue

5. Analysis Years/Periods

This study will evaluate traffic during and for the following time periods:
Existing Conditions - Existing conditions analyses will be conducted for year 2012 volume conditions. Turning movement counts were collected at several study area intersections in 2012. Intersections that do not already have recent count data from 2012 will be counted by the City of Sioux Falls as part of this study as described in Section 6. For existing conditions the following time periods will be evaluated:

- Existing Conditions (Year 2012) - AM Peak Hour
- Existing Conditions (Year 2012) - PM Peak Hour

Future/ Design Conditions - Future/ Design conditions analyses will be conducted for year 2035 conditions. This horizon year matches the planning horizon of the current Sioux Falls LRTP. The Travel Demand Model was calibrated and updated in year 2009 for a base year 2008 and planning horizon of year 2035. Projected traffic volumes from the Sioux Falls MPO Travel Demand Model will be utilized to establish year 2035 volumes. For the design conditions the following time periods will be evaluated:

- Future/Design Conditions (Year 2035) - AM Peak Hour
- Future/Design Conditions (Year 2035) - PM Peak Hour

Interim Conditions - No interim conditions will be evaluated as part of this study.

Year of Failure Conditions Analysis

Year of failure analysis will be conducted (for denoted study area intersections) to identify the year beyond the Future / Design year (2035) when traffic operations fail to meet acceptable criteria. Projected traffic volumes beyond year 2035 will be developed using straight line extrapolation between year 2012 adjusted peak hour volumes and year 2035 adjusted peak hour volumes. Potential years of failure will be evaluated in 5-year increments up to the identified year of failure. Should traffic operations still meet acceptable criteria 30 years beyond the Future / Design year (2065), the year of failure will be identified as beyond 2065, but no additional traffic analysis will be conducted for years beyond 2065.

- Year of Failure Conditions (Year determined by analysis) - AM Peak Hour
- Year of Failure Conditions (Year determined by analysis) - PM Peak Hour

Volume data will be smoothed/balanced for the Existing and Future/Design Conditions using the Cube Voyager macroscopic model, with adjustments to raw model output based on post-processing techniques.

6. Data Collection

Data Collection is one of the most important items during any transportation planning study. The data collection efforts are documented below:

Existing Arterial Intersection Turning Movement Count Data

Turning movement counts define actual traffic at the study intersections during the course of a typical weekday. The most recent turning movement counts available by the City of Sioux Falls at Cliff Avenue study intersections were mostly conducted in year 2012. The City of Sioux Falls also collected traffic data for the linked movement at $41^{\text {st }}$ St/Cliff Avenue in February 2015.

Existing Freeway Data

Automated Traffic Recorded (ATR) data was provided for SDDOT Station \#610, which is located between Exit 2 (Western Avenue) and Exit 3 (Minnesota Avenue). The ATR included hourly directional mainline l-229 freeway volumes from Sept 2012 to February 2013. In addition, ATR at Station \#610 was provided in 15-minute increments from March 6 to April 21, 2013.

SDDOT supplied hourly ramp volume data from year 2012. Study intersection turning movement counts will be used to determine existing AM and PM peak hour ramp volumes and then smoothed/balanced along the I-229 corridor.

Additional Data Supplied by SDDOT and/or City of Sioux Falls

- Vehicle Classification Samples on I-229 Interstate
- Supplied by SDDOT
- Crash History Geodatabase
- Supplied by SDDOT
- Includes crash records dated January 2008 to December 2012 (5 years)
- Roadway Design Standards
- available online at: http://www.sddot.com/business/design/forms/roaddesign/Default.aspx
- Construction Plans for I-229
- Supplied by SDDOT
- GIS Base Mapping Data (parcels, parks, streets, rail, plats)
- Supplied by City of Sioux Falls
- 2012 Aerial SID files
- Supplied by City of Sioux Falls
- MPO Travel Demand Model Files in Cube Voyager (Existing and Future)
- Supplied by City of Sioux Falls
- Average daily traffic counts
- Supplied by City of Sioux Falls

Data Collection Techniques

All data was collected and will be collected using standard field practices which consist of using cameras, digital count boards or tube counters.

7. Traffic Operations Analysis

Traffic Operations Analysis (Existing and Future No-Build)

1. Software
a. Signalized Intersections
i. Highway Capacity Software (HCS) Release 6.7 (2010 HCM Methodology) Streets Module
2. Ramp terminal intersections meeting the interchange types defined in HCM Chapter 22 (Interchange Ramp Terminals) will be analyzed with the Interchanges section of the Streets Module.
3. Analysis of a Diverging Diamond Interchange will follow the methodology outlined in the 'Highway Capacity Software Analysis Procedures for a Diverging Diamond Interchange (DDI)' memorandum, found in the Appendix.
b. Basic Freeway, Ramp Junctions and Weave Areas
i. HCS Release 6.7 (2010 HCM Methodology)
4. Operational Analysis Results
a. Level of Service (LOS)
i. Signalized Ramp Terminal Intersections (SDDOT's System)
5. Intersections where geometry is modified because of project improvements
a. Minimum allowable LOS - LOS 'C’
i. Individual movements will be allowed to operate at LOS ' D ' but the overall intersection LOS shall be ' C ' or better
6. Other intersections (intersections within the study area that are not modified by project improvements)
a. Minimum allowable LOS - LOS ‘D'
i. Individual movements will be allowed to operate at LOS ' E ' but the overall intersection LOS shall be 'D' or better
ii. Signalized Non-Ramp Terminal Intersections (City of Sioux Fall's System)
7. Minimum allowable LOS - LOS ‘D'
iii. Basic Freeway, Ramp Junctions and Weave Areas
8. Minimum allowable LOS - LOS ‘C’
9. Variables
a. Peak Hour Factor (PHF)
i. Existing (year 2012) conditions analysis will use calculated PHFs from existing counts with a maximum value of 0.93 .
ii. Design year (year 2035) conditions analysis will use existing PHFs rounded up to the nearest 0.05 with a maximum value of 0.93 .
10. The increase in the PHF is to account for traffic growth that is likely to be spread throughout the peak periods.
b. Saturation Flow Rate
i. SDDOT Design Manual (Page 24, Chapter 15) requires the use of 1,800 vph in Sioux Falls. This value will be used for the signalized intersections and freeway locations within the study area.
c. Traffic Signal Controllers
i. Operational analysis will allow for both actuated and coordinated controllers.
d. Left-Turn Phasing
i. Protected, Permitted / Protected or Split Phasing will be allowed at intersections.
e. Heaviest Lane Volume (Lane Utilization)
i. Default HCS Streets Values used for ramp terminal / arterial intersections.
f. Heavy Vehicle Percentage
i. Study Intersections
11. Use existing turning movement counts that included truck counts to determine arterial truck percentages.
ii. Ramp Junctions and Weave Areas
12. Use existing freeway counts that included truck counts to determine freeway truck percentages.
g. Phase Change Intervals
i. Existing (Year 2012) Conditions
13. Existing signal timings will be used for phase change intervals during existing conditions.
ii. Future No-Build (Year 2035) Conditions
14. Existing signal timings will be used for phase change intervals of phases that exist at intersections that have no geometric change from existing conditions.
15. Phase change intervals will be calculated for the following locations:
a. New phases added at an intersection where geometry is unchanged from existing conditions
b. All phases at an intersection where geometry is changed from existing conditions
The calculated values will be based on methodologies presented in the Institution of Transportation Engineers (ITE) Traffic Engineering Handbook. The methodologies presented in the handbook use vehicle length and speed and the distance needed to track through the intersection to calculate phase change intervals.
h. Speeds
i. Arterials - Use posted speeds
ii. Freeway - Use $85^{\text {th }}$ percentile of collected spot speed data
i. Right Turn on Red Volume
i. Existing (Year 2012) Conditions
16. The number of vehicles turning right on red will be assumed to be zero for all locations initially based on the guidance in the 2010 Highway Capacity Manual.
17. Intersections reporting LOS E or worse potentially related to right turn on red volume will be identified and presented to the SAT to decide if a right turn on red count is necessary.
18. If a right turn on red count is deemed necessary, video recordings of existing peak hour traffic at the locations of interest will be used to count the number of vehicles turning right on red and incorporated into the HCS analysis at these locations.
ii. Future No-Build (Year 2035) Conditions
19. The number of vehicles turning right on red will be assumed to be zero for all locations that were not counted for right turn on red movements.
20. For locations that were counted for right turn on red movements, the percentage of right turn on red volume of the total volume for the right turn movement in the existing condition will be multiplied by the future forecast right turn movement for each approach and incorporated into the HCS analysis at these locations.
21. Intersections reporting LOS E or worse potentially related to right turn on red volume will be identified and presented to the SAT to decide if a right turn on red count is necessary.
22. If a right turn on red count is deemed necessary, video recordings of existing peak hour traffic at the locations of interest will be used to count the number of vehicles turning right on red.
23. Step 2 will be repeated for all locations where a right turn on red count was added by the SAT based on a projected future operating condition of LOS E or worse.
iii. Future Build (Year 2035) Conditions
24. The number of vehicles turning right on red will be assumed to be zero for all locations that were not counted for right turn on red movements
25. For locations that were counted for right turn on red movements, the same projected right turn on red volume for Future No-Build (Year 2035) Conditions will be used, assuming the Future Build (Year 2035) Condition geometry remain similar to the Future NoBuild (Year 2035) Condition geometry.

8. Travel Forecast

1. The 2035 Sioux Falls MPO Travel Demand Model (Macro/Static Model) will be utilized for the basis of future year no-build volume development. The 2035 model will match the model specifications used in the Sub-Study 1 projections.

9. Safety Issues

Crash data will be reviewed for the study area based on the Crash Geodatabase which includes crashes between January 2008 and December 2012. SDDOT's database will be the only database used in the calculation of crash rates and critical
crash rates. The following information will be provided as a result of the crash analysis:

- Segment and Intersection Crash Rates
- Segment and Intersection Critical Crash Rates (per Highway Safety Manual)
- Crash Trends
- Potential Mitigation Measures to Improve Locations Above Critical Crash Rates

Predictive crash analysis will be conducted for freeway segments, freeway ramps, ramp terminal intersections, and some arterial intersections with the limits described in the Sub-Study 1 \& Sub-Study 6 Methods and Assumptions documents. Predictive crash analysis will be conducted using the following standard procedures / tools:

- All analysis types
- For existing conditions:
- Geometric information will be estimated from aerial photography using tools built in to Google Earth.
- Average daily traffic counts, described in the data collection section of this document, will be utilized.
- For build conditions:
- Geometric information available from design files will be utilized. Geometric information not available at this level of design will be assumed to match existing conditions where practical.
- Projected future daily volumes, described in the travel forecasting section of this document, will be utilized.
- Calibration factors or South Dakota-specific Safety Performance Functions will not be used in place of default equations from the Enhanced Interchange Safety Analysis Tool (ISATe).
- Existing crash data (2008-2012) will be used when forecasting expected crash frequency for the Existing and the Future No-Build Conditions using the Empirical Bayes method.
- Existing crash data will not be used as a factor when predicting crash frequency for Future No-Build and Build Alternative Conditions for comparing these scenarios.
- Computed crash prediction frequencies will be reported by crash type using default distributions included in the Highway Safety Manual where applicable.
- Freeway segments, freeway ramps, and traditional ramp terminal intersections
- ISATe Build 06.10 will be used.
- Non-traditional ramps and ramp terminal intersections
- Analysis will follow the methodology outlined in the 'Crash Prediction Analysis Procedures for Diverging Diamond Interchange (DDI), SinglePoint Urban Interchange (SPUI), and Two-Lane Loop Ramp' memorandum, found in the Appendix of this document.
- Arterial intersections
- Methods from Chapter 12 of the Highway Safety Manual will be used.

Predictive crash analysis will forecast crash frequencies for Existing (Year 2012, for comparison to actual crashes), Future No-Build (Year 2035) and Future Build Alternative (Year 2035) conditions.

10. Selection of Measures of Effectiveness (MOE)

The main goals of this study are as follows:

1. Conduct an interchange options study for Exit 4 (Cliff Avenue).
a. Complete a traffic level of service analysis for both existing and future (2035) conditions along Cliff Avenue from $33^{\text {rd }}$ Street to $49^{\text {th }}$ Street.
b. Complete a safety analysis of Cliff Avenue from $33^{\text {rd }}$ Street to $49^{\text {th }}$ Street.
c. Complete a predictive safety analysis of interchange Exit 4 (Cliff Avenue) for both existing and future (2035) conditions.
d. Determine and recommend improvement options that will improve mobility and safety along the Cliff Avenue corridor, including the I229 Exit 4 interchange.
2. Create final products for use by the SDDOT and City of Sioux Falls which will guide them in the implementation of recommended improvements that will maximize the efficiency of the system.

To satisfy the study objectives, the following MOEs will be used to evaluate and compare the concepts:

- Cliff Avenue Intersections: LEVEL OF SERVICE (LOS) and INDIVIDUAL MOVEMENT DELAY
- Cliff Avenue Corridor: LOS and TRAVEL SPEED
- Ramp Terminal Intersections: LOS and INDIVIDUAL MOVEMENT DELAY
- Freeway Segments, Ramp Junctions and Weave Areas: LOS and DENSITY

These statements are made assuming that the geometric improvements identified meet all AASHTO, SDDOT, and City of Sioux Falls guidelines. It is understood that all traffic analysis reporting will be completed using HCM 2010 Methodology.

11. FHWA Interstate Access Modification Policy Points

An Interchange Modification Justification Report (IMJR) will not be developed for the I229 Exit 4 (Cliff Avenue) interchange as part of this project.

12. Deviations/Justifications

No deviations from standards are currently known. If it is determined during the study that deviations are required, the methods and assumptions document will be amended prior to proceeding.
13. Conclusion

All sections contained in this document will guide the traffic data collection and traffic assessment for this study.

14. Appendices

The appendix includes the following:

- Methods and Assumptions Study Team Meeting Minutes (March 7, 2016)
- Analysis Procedures for Diverging Diamond Interchange (DDI)
- Crash Prediction Analysis Procedures for Diverging Diamond Interchange (DDI), Single-Point Urban Interchange (SPUI), and Two-Lane Loop Ramp

APPENDIX

Meeting Minutes

Project: I-229 Major Investment Study (MIS)
Subject: Study Advisory Team (SAT) Meeting \# 15
Date: Monday, March 7, 2016
Location: Online Meeting
Attendees

Scott Jansen - SDDOT	Amber Gibson - MPO
Jeff Brosz - SDDOT	Ron McMahon - FHWA
Kevin Goeden - SDDOT	Mark Hoines, FHWA
Pete Longman - SDDOT	Shannon Ausen - City of Sioux Falls
Andy Vandel - SDDOT	Heath Hoftiezzer - City of Sioux Falls
Paul Nikolas - SDDOT	Jason Kjenstad - HDR
Steve Gramm - SDDOT	Jon Markt - HDR
Brad Remmich - SDDOT	Dave Meier - HDR
Travis Dressen - SDDOT	Brian Ray - HDR
Tom Lemkuhl - SDDOT	Courtney Sokol - HDR
Dave Huft - SSDOT	Theo Weseman - HDR
Christina Bennett - SDDOT	Garret Menard - HDR
Joel Gangler - SDDOT	

Action Items		Responsibility
1	Rice 3: Review access to third parcel south of Rice and west of existing Cleveland to ascertain whether a dedicated access to the property is feasible	HDR
2	Rice 3b: Reduce property impacts/takes from realigned Cleveland and implement a right-of-way corridor instead	HDR
3	Rice 3c, Rice 5, Rice 7: Review access options for Archery Outfitter's property or show as full take	HDR
4	Rice 3b, Rice 3c: Investigate sensitivity of $3^{\text {rd }}$ EB lane on Rice Street	HDR
5	All Options: Review feasibility of purchasing the property north of the warehouse/shipping facility property located north of Rice and east of I-229 to connect to N Glenwood Cir for access from the north side of property. Include median break for $3 / 4$ access from Rice	HDR
6	Rice 5: Review NB entrance and SB exit ramps to assess if profile grade criteria would encourage lengthening the ramps	HDR
7	Schedule meeting with BNSF for feedback on concepts, particularly existing ditch encroachment and upgraded at-grade crossings	HDR
8	Rice C2: Add first feature bullet: "All on-street parking to be removed."	HDR
9	Review documents presented at SAT meeting \#15 and follow up with questions/comments	SAT
10	Follow up with environmental lead about Environmental Justice impact details that can be reasonably added to the environmental review findings	HDR
11	Change $41^{\text {st }}$ to $49^{\text {th }}$ in SS 6 M\&A document. Two locations on page 3	HDR
12	Strike bullet concerning access to lift station from "Need for Study" section in M\&A document	HDR
13	Replace Captain Alan Welsh with Lieutenant Jeff DeVaney on page 6 of M\&A document	HDR
14	Replace Mike Behm job title with SDDOT Planning \& Engineering and Tom	HDR

```
Lemkuhl job title with SDDOT Administration/Environmental on Page 6 of M&A
document
Add "Cliff Avenue" to the Sub-Study #6 title block on Page 1 HDR
Update minor comments on M&A document and reissue for signature HDR
Check on facilities for June public & stakeholder meetings City of Sioux
Falls
```

1. Introductions/Agenda Overview

- Review Rice Street developed concepts
- Discuss upcoming public meeting
- Review Cliff Ave M\&A document

2. Rice Street Developed Concepts Review

- HDR presented Rice St Concept Summary Table (Table 1 from Tech Memo). Changes, additions, and removals for each concept were discussed. There were no questions/comments.
- HDR presented each Rice St Concept Figure (exhibits from Tech Memo). HDR discussed traffic analysis advancement, updated geometrics, updated concepts, and added features from SAT Meeting \#14.
- HDR discussed Rice 1. Additions included retaining wall added at the bridge abutments to avoid full bridge reconstruction and a splitter island added at the southbound ramp terminal intersection. Traffic operations are better than existing conditions but do not meet level of service (LOS) C criteria. This option is shown as LOS D in AM and PM
o SDDOT inquired about the full take for the single family home south of Rice on the east side of Cleveland. HDR stated that widening Cleveland requires the use of the entire driveway. Since there would be no parking for the driveway, total acquisition of the parcel is anticipated.
- HDR discussed Rice 2. Additions included a full reconstruct for the I-229 bridges over Rice Street, a splitter island was added at the SB ramp intersection, Cleveland northbound was reduced to one through lane to match the one receiving lane on the I-229 northbound on ramp, and the dual right turn lanes on northbound Cleveland were reduced to a single lane.
o There were no comments/questions.
- HDR discussed Rice 3. Additions included a retaining wall added at the $\mathrm{I}-229$ bridge abutments, a splitter island at the SB ramp terminal, and a connection from realigned Cleveland to a segment of existing Cleveland to grant access to businesses and single family home. The right turn lanes on eastbound Rice to southbound Cleveland were reduced from two to one, and a raised median was added on Cleveland at its intersection with Rice.
o SDDOT inquired about the access to the third parcel south of Rice and west of existing Cleveland. HDR will review access options to the parcel to ascertain whether a dedicated access to the property is feasible.
o The City of Sioux Falls inquired whether the northernmost parcel east of Cleveland and south of Rice is part of a single business. HDR responded that it appears to be, even though it is shown as separate parcels. There is no take shown on the east side of Cleveland as the properties can be accessed and used.
- HDR discussed Rice 3b, a new concept developed at request of SAT at SAT \#14. It includes a 4 lane divided corridor on Rice Street that includes a grade separated, realigned Cleveland Ave over the BNSF Railroad. It eliminates the Cleveland and Bahnson at-grade RR crossings. The connection to the business on southeast side of Bahnson and Rice is shown under the bridge at Rice.
o SDDOT inquired about the stop-controlled condition on Bahnson and Cleveland. HDR responded that it is a two-way stop with Cleveland being the free movement.
o The City of Sioux Falls asked about the need to take all property north of realigned Cleveland. The business could sell the remaining property for redevelopment. HDR will reduce property impacts/takes and implement a right-of-way corridor instead.
- HDR discussed Rice 3c, a new concept similar to Rice 3b, except that the ramps have been improved for I-229. The west ramp terminal was realigned to intersect Rice St at Lowell Ave and the loop horizontal curve improved to a 35 mph design. The east ramp terminal was realigned to be more perpendicular with Rice St and improved to a 30 mph design curve. The directional ramps included to north require bridge widening over the Big Sioux River. The intersection at Lowell is shown as upgraded to a signalized intersection. HDR pointed out that anywhere there is an intersection upgrade that includes improvements reaching an existing at-grade railroad crossing, it is anticipated that the crossing surface would be replaced, crossing gates installed, and the railroad signal system coordinated with the traffic signal (preemption).
o HDR inquired about access on the west side of I-229 to the Archery Outfitter's property. The City of Sioux Falls responded that it is not a heavily traveled commercial business access road archery lessons and that rerouting access along the residential street would probably not be supported by residents. HDR does not believe there is enough room to extend an access to Rice Street. HDR recommended showing the property as an acquisition. City of Sioux Falls agreed that showing as an acquisition is the best way to start. HDR will review access options for Archery Outfitter's property or show as full acquisition.
> Post-Meeting Note: This property includes more land than originally understood during the meeting discussion of the access. A Full acquisition may not be desired.
o The City of Sioux Falls inquired about lane utilization assumptions and if the additional eastbound lane on Rice between existing Cleveland and Bahnson is needed. HDR responded that it is necessary based on the combined traffic volumes. HDR will look into the LOS results if the lane is removed.
$>$ Post-Meeting Note: HDR verified that the $3^{\text {rd }}$ EB lane is necessary based on traffic volume levels. A six-lane section all the way to Sycamore would further justify balanced lane utilization in this area.
o The City of Sioux Falls discussed how to access property east of I-229 and north of Rice St and noted that the strip of land to north of those parcels could be acquired and used for access. HDR will review the feasibility of connecting this strip to N Glenwood Circle for access to properties. This would include a median break on Rice St at N Glenwood and verifying that traffic operations at Bahnson Ave intersection would not be adversely impacted. The N Glenwood intersection could be shown as a $3 / 4$ access. This access could also provide access to the parcel to the north. If there was no access to this parcel, it would need to be shown as a full acquisition.
- HDR Discussed Rice 4; a modification of the original Rice 4. Its changes include a raised median as a physical barrier to prevent through and left turn movements and a raised median added on Cleveland Ave at Rice St. All through and left turn movements have been eliminated at the intersection, and traffic must use right turns and U-turns. The median U-turn lane was extended, a lane added near Lowell, and the bridges on I-229 over Rice will be full reconstruction.
o SDDOT inquired if a median break for the access to properties between the northbound ramp terminal and U-turn supplementary intersection is intended. HDR responded that all driveway access between the ramp terminal and U-turn intersections need to be right in/right out.
o The City of Sioux Falls inquired if the Rice St alignment was shifted north to keep separation from the RR. HDR responded yes, this option provides more separation from the RR.
o FHWA inquired if another U-turn provision at Bahnson Ave would help. HDR responded that not many people would use it as it is further away from Cleveland Ave. Also, a U-turn at Bahnson would not accommodate the level of design vehicle used elsewhere in the corridor. The City of Sioux Falls noted that this might cause an undesirable increase in traffic volumes on Bahnson, especially near the school and library, in an effort to avoid unconventional turns.
o SDDOT asked if the northbound lanes on Cleveland Ave at Rice St could be signed so that northbound Cleveland traffic headed for I-229 or westbound Rice St would use the left-hand, right turn lane on the approach at Rice S, eliminating the need to weave across a lane on Rice to reach the U-turn lane. HDR responded that the signage could probably be provided, however driver reaction to signs intended to guide them through linked turning movements is sometimes less than hoped for. Local drivers would probably quickly become familiar with the most efficient path through the combination of turning movements.
o SDDOT asked if there are any problems with vehicular safety if using a channelizing island. HDR responded that right-turning traffic was assumed to be controlled by a signal and not a yield sign. A channelizing island would function mostly as a pedestrian refuge island.
- HDR discussed Rice 5. The additions include showing a new bridge over I-229 at the SPUI ramp terminal intersection and a right turn lane added on Rice Street eastbound at Lowell, to provide storage for the railroad at-grade crossing on Lowell. The Rice and Lowell intersection was upgraded to a signalized intersection, which will require upgrades to existing at-grade railroad crossing just to the south. The northbound right turn lane along Cleveland Ave was removed.
o SDDOT requested that an access to the Archery Outfitter's property be investigated. An access would need to be at least 660feet away from the ramp terminal intersection radius. HDR will review access options for the Archery Outfitter's property.
o SDDOT asked if the northbound entrance ramp and the southbound exit ramp are long enough to allow reasonable grade profiles. HDR will conduct a preliminary review of ramp grades for the offset SPUI and adjust ramp lengths if needed.
- HDR discussed Rice 7; a new concept requested after SAT \#14. It provides realigned I-229 ramps to increase the design speed on the northbound exit ramp to 45 mph and to 35 mph on the southbound entrance ramp. The southbound entrance ramp has been realigned with Lowell Ave and the intersection upgraded to a signalized intersection with an upgraded at-grade railroad crossing and signal. The connection point to I-229 has been pushed north and the bridges over the Big Sioux widened to accommodate.
> Post-Meeting Note: There were no FHWA comments about the Cleveland Ave intersection located between the ramp terminal intersections. Cleveland Ave and its intersection with Rice St will remain as shown.
o The City of Sioux Falls asked why traffic operations weren't more improved. HDR responded that this concept included an additional signal so there was more travel time and stop time.
o The City of Sioux Falls commented that they need to understand what BNSF will require at the reconstructed at-grade railroad crossings. HDR will set up a meeting with BNSF personnel for feedback on the concepts.
> Post-Meeting Note: Contact was made with Kristopher Swanson of BNSF on March $11^{\text {th }}$. A meeting to review the Rice St concepts will be scheduled for either the week of April $11^{\text {th }}$ or the week of April $25^{\text {th }}$ when Mr. Swanson will be in South Dakota.
- HDR discussed Rice C2. The Cliff Ave turn lanes have been lengthened which increase overall reconstruction limits. Retaining walls have been added due to urban constrains and tighter right-of-way limits and some full property acquisitions are shown.
o The City of Sioux Falls inquired if the total acquisitions were because buildings are so close to the corridor. HDR confirmed.
o HDR asked if a section that is not median-divided should be looked at. The City of Sioux Falls responded that if Russell to Rice corridor is built, the median is necessary.
o SDDOT inquired about a signal at Jessica and Rice. HDR responded that Jessica was not included in the study and traffic volume data is not available.
o The City of Sioux Falls requested that a note be added to the concept features list: "On street parking will be removed with all concepts." HDR will add first feature bullet.
o SDDOT discussed how large trucks would access I-229 from property north of Rice St and west of I-229. Several routes were discussed.

3. Ditch conditions between Rice \& BNSF

- HDR discussed the impacts to the railroad. BNSF owns most of the green space between Rice St and the railroad. A majority of options will be widening Rice St and adding a sidewalk which are components of nearly all of the concepts will impact the existing ditch section along the railroad. HDR will discuss these impacts with BNSF at a meeting to be scheduled.
- The existing ditch section is variable so there is not yet a for potential drainage issues. If BNSF decides that there is to be no foreslope encroachment, Rice improvements as shown in the concepts to date will need to be shifted to the north.
- The City of Sioux Falls mentioned that they needed to get an easement just to put a traffic signal, so shifting all alignments north is a likely possibility.
- Post-Meeting Note: If input from BNSF suggests the need to shift Rice St improvements to the north, additional concept layout and development will be needed.

4. Rice St Summary Comparison Table

- HDR discussed the evaluations and environmental impacts that have been rolled into a table. The right-of-way costs are included in the cost estimate, and right-of-way acres are also included. The table will be adjusted per SAT comments recorded above, and Rice 3b and Rice 3c concept costs and acreage could go down.
- SDDOT inquired about environmental justice. HDR said that once the concepts are moved into NEPA, EJ would get more attention. HDR will follow up with its environmental lead about Environmental Justice impact details that can be reasonably added to the environmental review findings at this stage.

5. Cliff Ave M\&A

- HDR discussed the M\&A document for Sub-Study \#6.
- HDR will change $41^{\text {st }}$ to $49^{\text {th }}$ in the instances that it occurs.
- City of Sioux Falls inquired if the existing access to the Tuthill Park sanitary sewer lift station could remain as a curb ramp on Cliff Ave.

FHWA concurred, since it is not accessed very often and it looks more like a pedestrian access so there would not be issues with other people driving on it. HDR will strike the fourth bullet from the "Need for Study" list.

- Captain Alan Welch has retired and HDR will replace with Lieutenant Jeff DeVaney on Page 6.
- HDR will replace Mike Behm's job title with SSDOT Planning \& Engineering and Tom Lemkuhl's job title with SDDOT Administration/Environmental on Page 6.
- The City of Sioux Falls asked if HDR could analyze the Lincoln High School pedestrian signal operation and access. HDR responded that they could not without more data collection. There was no further discussion on adding the Lincoln High School area to the list of study intersections.
- HDR will update minor comments and reissue for signature.
- HDR will add "Cliff Avenue" to Sub Study 6 title block on page 1.

6. Next Steps

- HDR discussed the possibility of June 22, 23, and 24 as a window for Rice St and Cliff Ave stakeholder \& public meetings and a preliminary concept screening workshop in Sioux Falls. The City of Sioux Falls will find a location to use.
- The updated website was discussed. HDR will strive to have the web site content reflect upcoming Rice St and Cliff Ave study milestones.

7. Other Items

- HDR discussed the progress on Sub-Study $3\left(10^{\text {th }}\right.$ Street) along with working through other concepts in modeling.
- The City of Sioux Falls will schedule a meeting with HR Green soon to review updated Minnesota Ave Build Scenarios.
- HDR has supplied SDDOT with comments responses on detour maps. SDDOT has circulated the responses to SAT for review. HDR can re-issue once concurrence is received from SAT.

To: File	
From: Mike Forsberg, P.E.	Project: None
CC:	
Date: July 18, 2013	Job No:

RE: Highway Capacity Software Analysis Procedures for a Diverging Diamond Interchange (DDI)

Introduction

This document presents a proposed methodology for analyzing a Diverging Diamond Interchange (DDI) using Highway Capacity Software (HCS) 2010 Streets module. The Federal Highway Agency (FHWA) has indicated that HCS 2010 is the preferred traffic analysis tool for various projects within certain agencies. The procedures documented in this memorandum were developed in response to known challenges of analyzing DDIs in HCS 2010 based on discussions with the software developer, McTrans. HCS 2010 version 6.50 was utilized to develop this methodology.

Proposed DDI Analysis Methodology

The proposed analysis methodology for DDIs includes manipulation of the intersection movements at a DDI to analyze the ramp terminal intersections as standard four-leg intersections in HCS 2010. The proposed methodology involves manipulating the movements at the DDI ramp terminal intersections of the proposed DDI concept to conform to the analysis methodology of HCS 2010 while mimicking similar operational elements of the DDI ramp terminal intersection.

For simplification purposes, the methodology is presented for an arterial oriented north/south and freeway oriented east/west. The methodology for different orientations would be the same, but rotated accordingly. Figure 1 expresses the proposed manipulation of the DDI ramp terminal movements into a format with standard four-leg intersections. The modified standard four-leg configuration shown in Figure 1 would have split-phase operations for northbound and southbound traffic and allow for coordination of the ramp terminal intersections with signals north and south of the interchange.

Figure 1. Manipulation of DDI Movements into Standard Four-Leg Intersections

The following presents details of the proposed manipulation of intersection movements for the westbound ramp terminal intersection shown in Figure 1 from the DDI configuration to a standard four-leg intersection configuration. Manipulation of intersection movements for the eastbound ramp terminal intersection would follow similar methodology.

- The DDI westbound ramp terminal intersection would operate as a two-phase signal. The northbound crossover movement (A) and westbound off-ramp left-turn movement (C) would
travel through the intersection during the first phase (e.g., phase 2). The southbound crossover movement (B) and westbound off-ramp right-turn movement (D) would travel through the intersection during the second phase (e.g., phase 6).
- The two-phase operations of the DDI would be modified to two-phase operations with a fourleg intersection configuration. For example, at the westbound ramp terminal intersection:
o The northbound crossover movement (A) of the DDI would be treated as a northbound through movement in the four-leg intersection configuration.
o The northbound left-turn movement of the DDI in advance of the crossover would be treated as a northbound right-turn movement in the four-leg intersection configuration.
- The value for right-turn-on-red (RTOR) for the northbound right turns would be set to zero. This assumes that all northbound right turns would only be able to turn during the northbound green signal indication. This assumption is conservative since these vehicles would be able to complete this turning maneuver during a northbound red signal indication in the DDI configuration, while the northbound queue of the crossover movement does not extend to the turning movement location. However, due to the unknown percentage of time that the northbound through movement would extend beyond the turning movement location, it is assumed that no vehicles would be able to turn right on red.
o The southbound crossover movement (B) of the DDI would be treated as a southbound through movement in the four-leg intersection configuration.
o The southbound right-turn movement of the DDI in advance of the crossover would be treated as a southbound right-turn movement in the four-leg intersection configuration.
- The value for right-turn-on-red (RTOR) for the southbound right turns would be set to zero. This assumes that all southbound right turns would only be able to turn during the southbound green signal indication. This assumption is conservative since these vehicles would be able to complete this turning maneuver during a southbound red signal indication in the DDI configuration, while the southbound queue of the crossover movement does not extend to the turning movement location. However, due to the unknown percentage of time that the southbound through movement would extend beyond the turning movement location, it was assumed that no vehicles would be able to turn right on red.
o The westbound off-ramp left-turn movement (C) of the DDI would be treated as an eastbound right-turn movement in the four-leg intersection configuration.
- This movement would be treated as an eastbound right-turn movement at a signal with RTOR allowed. The value of RTOR would be based on the 'RTOR Reduction' factor shown in the HCM 2000 report obtained from Synchro traffic analysis software (Synchro would be used to code the modified four-leg configuration and obtain the RTOR value for this movement).
o The westbound off-ramp right-turn movement (D) of the DDI would be treated as a westbound right-turn movement in the four-leg intersection configuration.
- RTOR for the westbound right-turn movement would likely be restricted in the DDI configuration for safety purposes; therefore, the RTOR of the westbound right-turn movement four-leg configuration would be set to ' 0 '. For locations where the controlling agency would operate the westbound off-ramp right-turn movement (D) of the DDI with RTOR allowed, the value of RTOR would be based on the 'RTOR Reduction' factor shown in the HCM 2000 report obtained from Synchro.
o In the modified version of the four-leg intersection the northbound (A) and eastbound (C) movements would travel through the intersection during the same phase (e.g., phase 2). This would be consistent with the overlapping northbound crossover movement (A) and westbound off-ramp left-turn movement (C) of the DDI.
o In the modified version of the four-leg intersection the southbound (B) and westbound (D) movements would travel through the intersection during the same phase (e.g., phase 6). This would be consistent with the overlapping southbound crossover movement (B) and westbound off-ramp right-turn movement (D) of the DDI.

The following presents specific details of coding elements in HCS 2010 Streets to model the westbound ramp terminal intersection shown in Figure 1 as a standard four-leg intersection of the DDI intersection. Manipulation of intersection movements for the eastbound ramp terminal intersection would follow similar methodology.

- To model split-phase operations for the arterial street (northbound and southbound movements) in HCS 2010 Streets, the following coding elements would be needed. Additionally, the diagrams shown in Figure 2 supplement the coding elements listed below.
o Artificial ("dummy") northbound and southbound left-turn movements would be added with protected phasing. These movements would not serve any of the DDI traffic. The added left-turn phases would be phase 5 for the northbound left-turn movement and phase 1 for the southbound left-turn movement (based on the previously mentioned example phasing of phases 2 and 6 for the northbound and southbound through movements, respectively).
o The eastbound and westbound right-turn movements would be overlapped with the northbound and southbound left-turn movements.
o The southbound left-turn movement would be set to a lagging left-turn phase so that the northbound and southbound left-turn movements would not need to have a green signal indication simultaneously.
o The Recall Mode for the northbound and southbound left-turn movements would be set to 'Max'.
o Eastbound and westbound phases (phases 8 and 4, respectively) would be required to be included to meet the criteria for signal timings in HCS 2010 Streets. This would include eastbound and westbound through movements with zero volume. These phases would have a green signal indication simultaneously for 1 second (the minimum time allowed for a phase). This effectively serves as the Red time for the previous split that serves southbound traffic. This 1 second phase for the eastbound and westbound approaches is labeled as "Dummy" All Red Phase in Figure 2. To counter the additional 1 second of green time given to the eastbound and westbound right-turn movements, each of these movements would be given an additional 0.5
seconds of "Start-Up Lost Time". Each of these right-turn movements would experience the extra 0.5 seconds of "Start-Up Lost Time" during the "Dummy" All Red Phase and during their normal phase of operation (Phase 1 or 5), totaling 1 second of additional "Start-Up Lost Time" over the course of 1 signal cycle for the eastbound and westbound right-turn movements.
o The Demand for the northbound and southbound left-turn movements would be set to ' 1 ' in order for phases 1 and 5 to be given a green signal indication (otherwise, all of the time would be given to the phase where northbound and southbound traffic travel through the intersection simultaneously).

Figure 2. Sample HCS 2010 Streets Phasing for the Westbound Ramp Terminal Intersection
"Dummy" LeftTurn Movements with Max Recall

Operational Phases and Times

- The following coding elements would also be included in HCS 2010 Streets to mimic the movements of the DDI.
o The Arrival Type for the eastbound and westbound right-turn movements would be ' 3 ', representing random arrivals from the freeway. The Arrival Type for the
northbound and southbound approaches would be '4', representing coordination of signals. However, the arrival patterns of the northbound and southbound movements would be dictated by the signal timings at upstream intersections and the coded Arrival Type for the northbound and southbound approaches would not have any impact on the operations at these intersections.
o Phase 5 would operate with 4 seconds of yellow and 1 second of all red.
o Phase 1 would operate with 4 seconds of yellow and 0 seconds of all red (the all red time would be effectively given by the "Dummy" All Red Phase shown in Figure 2).
o The Phase Split time for the northbound left-turn movement (phases 5) would be set to the optimum phase split time for the northbound movement. The Phase Split time for the southbound left-turn movement (phases 5) would be set to the optimum phase split time for the northbound movement minus 1 second (to account for the 1 second "Dummy" All Red Phase). The combined split times for the northbound leftturn movement (phase 5), southbound left-turn movement (phase 1) and eastbound/westbound movements (phases 8/4) would equal the cycle length of the signal, leaving no remaining time for the overlapping phase where northbound and southbound through traffic would travel through the intersection simultaneously.
o The speed limit would be set to 25 mph to account for lower speeds through the crossover and channelized turn movements. The exception to this would be for the southbound approach that arrives from outside of the DDI and would be set to the speed limit of the Arterial Street.

As mentioned previously, the modified standard four-leg configuration would have split-phase operations at the ramp terminal intersections for northbound and southbound traffic and allow for coordination of the ramp terminal intersections with signals north and south of the interchange. The signal offset values at the ramp terminals would be based on the turn patterns at each intersection to maximize platooning of traffic through the two signals. Signal offsets at intersections adjacent to the ramp terminals would be based on the offsets established at the ramp terminal intersections.

Memo

> | Date: | Wednesday, November 04, 2015 |
| ---: | :--- |
| Project: | |
| To: | File |
| From: | $\begin{array}{l}\text { Rob Frazier, P.E. } \\ \text { Jon Markt, EIT }\end{array}$ |
| Subject: | $\begin{array}{l}\text { RE: Crash Prediction Analysis Procedures for Diverging Diamond Interchange (DDI), } \\ \text { Single-Point Urban Interchange (SPUI), and Two-Lane Loop Ramp }\end{array}$ |

Introduction

This document presents proposed methodologies for performing crash prediction for a Diverging Diamond Interchange (DDI), a Single-Point Urban Interchange (SPUI), and a two-lane loop ramp. The American Association of State Highway and Transportation Officials (AASHTO) Highway Safety Manual (HSM) provides a standard practice for safety analysis over a project's full life-cycle. The HSM can be faithfully implemented by a variety of tools including the Federal Highway Administration's (FHWA) Enhanced Interchange Safety Analysis Tool (ISATe). However, neither the HSM nor ISATe currently address the DDI, SPUI, or two-lane loop ramp configurations. In response to these shortcomings, a synthesis of recent and on-going research yielded these proposed methodologies to address crash prediction for the DDI, SPUI, and twolane loop ramp.

Crash Prediction

Crash prediction is a method of assessing safety by applying a combination of Safety Performance Functions (SPFs) and Crash Modification Factors (CMFs) to a roadway facility to predict the number of crashes that are statistically likely to occur in an average year. Crash prediction relies on roadway and roadside geometry, traffic volumes, traffic control, and other safety related factors to forecast crash frequency. Crash prediction can be performed at the site level or at the project level. Site level crash prediction involves the use of SPFs or CMFs to predict crash frequency for an individual roadway segment or intersection. Project level crash prediction involves the use of a CMF to estimate the change in crash frequency for a group of sites that make up the project area. For example, consider the conversion of an at-grade intersection to a grade-separated interchange. The site level analysis would involve calculating crash frequency for the existing intersection and adjacent roadway segments and the calculation of crash frequency for the proposed roadway segments, ramps, and ramp terminal intersections related to the interchange. For a project level analysis of the same example, a single project level CMF would be used to estimate predicted crash frequency at the interchange, based on the existing crash frequency at the intersection.

In general, a project level assessment is more simple and easier to implement. Site level analyses provide greater detail and flexibility in both the analysis and presentation of the results.

The proposed methodology applies site level analysis where possible, using project level analysis only when necessary.

Diverging Diamond Interchange (DDI)

DDIs have only been in operation in North America since 2009. Considering that HSM methods rely on observed crash data for the development of SPFs and CMFs, the newness of the DDI has been a major factor in its absence from the HSM and consequently ISATe. Recently however, researchers have completed several in-depth safety evaluations of DDIs in Missouri. As an early adopter of DDIs, Missouri provides a good source for DDI crash data. The research has addressed both project level and site level analyses. Based on these studies, the proposed methodology is as follows:

1. Develop crash predictions for the freeway mainline for the No-Build and Build (DDI) conditions
2. Develop crash predictions for theoretical traditional diamond interchanges for the locations of the proposed DDI interchanges (predicted crashes for ramps and ramp terminals).
3. Develop site level crash predictions for the ramp and ramp terminals for the proposed DDI designs.
a. Ramps - The ramp crash predictions will be based on the ramp geometry and will only be adjusted if specifically indicated by the research.
b. Ramp Terminal Intersections - The ramp terminal crash predictions will be developed by applying CMFs from the research to the diamond ramp terminal predictions. Preliminary CMFs are:
i. $\quad \mathrm{CMF}_{\text {Fatal\&ınjury }}=0.63$
ii. $\mathrm{CMF}_{\text {PropertyDamageOnly }}=0.51$
4. As a check on the site level predictions, a project level analysis will also be prepared. This will use the project level research CMFs to modify the entire diamond interchange crash prediction to estimate the entire DDI interchange crash frequency. This value will be compared with the site level results before finalizing the crash predictions.

Crash type frequency will not be quantitatively predicted for the DDI ramp terminal intersections. A qualitative assessment will be provided for the trends in crash type associated with the DDI.

Single-Point Urban Interchange (SPUI)

The SPUI has a much longer history compared to the DDI, but a similarly limited research base pertaining to predictive safety. Research has begun on NCHRP Project 17-68 to develop SPFs and CMFs directly applicable to SPUIs, but the project is still on-going. The NCHRP Project 1768 will have a significant crash data set (~ 100 intersections) to develop SPFs and CMFs. Investigations into other research concerning SPUIs and crash prediction have not produced any additional studies. However, some data concerning SPUIs has been made available by SDDOT (before and after study data for conversion from a traditional diamond interchange to a SPUI). Based on these studies, the proposed methodology is as follows:

1. Should NCHRP Project 17-68 results become available prior to March 2016
a. Analyze the SPUI ramp terminal intersection based on methods / equations from NCHRP Project 17-68.
2. Should NCHRP Project 17-68 results not be available
a. Perform crash prediction for a traditional diamond interchange with similar freeway mainline segment, freeway ramp segment, and ramp terminal interchange characteristics as the proposed SPUI.
b. Combine site predicted crashes for the traditional diamond interchange to develop a project level estimate of crashes.
c. Multiply the project level estimate of crashes for the traditional diamond by a project level CMF based on the available SDDOT data. The preliminary CMF is 0.63 for conversion of a traditional diamond interchange to a SPUI.

Should NCHRP Project 17-68 results not be available, crash type frequency will not be quantitatively predicted for the SPUI ramp terminal intersection. A qualitative assessment will be provided for the trends in crash type associated with the SPUI. Should NCHRP Project 17-68 results be available, recommendations from that project will be utilized to determine how to provide crash type frequency information.

Two-Lane Loop Ramp

Single-lane loop ramp safety is addressed at both the ramp segment and ramp terminal intersection level by the Highway Safety Manual, and most loop ramps are single-lane loop ramps. The previous reasoning may explain why developing SPFs and / or CMFs for two-lane loop ramps has not been a primary research direction based on our literature review. However, NCHRP Project 03-105 is on-going research and will attempt to improved roadway design guidance for single-lane and two-lane loop ramps. The project research plan was to collect safety data for single-lane and two-lane loop ramps, there may be an opportunity to use results of this project to address crash prediction for two-lane loop ramps. Based on this review of available research, the proposed methodology is as follows:

1. Should NCHRP Project 03-105 results become available prior to March 2016
a. Analyze the two-lane loop ramp terminal intersection based on data, methods, equations, and findings from NCHRP Project 03-105.
2. Should NCHRP Project 03-105 results not be available
a. Perform crash prediction for a two-lane ramp segment with tight curvature.
b. Confirm that the crash prediction for a two-lane ramp segment with tight curvature produces reasonable crash prediction results. This will involve comparing the predicted number of single-vehicle and multi-vehicle crashes for the tight curvature ramp with a standard one-lane loop ramp. If comparison crash data is available for two-lane loop ramps that will also be considered.

Appendix B1. Traffic Capacity Analysis Methodologies

Traffic operational analysis involves the development of input parameters, the use of traffic flow models to determine measures of effectiveness based on the inputs, and the evaluation of those measures of effectiveness. The input development requires information on levels of traffic, vehicle classification, facility geometry, signal timing data, and speed data. Many of these input parameters were identified and collected as described as part of the data collection efforts, while some required assumptions or processed data to develop the best input parameters for traffic analysis.

Level of Service

After identifying the proper input data, level of service (LOS) analyses for the existing conditions were performed for the basic freeway segments, weave segments, freeway merge and diverge segments, and key intersections (including ramp terminal intersections) using procedures from the Highway Capacity Manual (HCM). Highway Capacity Software 2010 (HCS 2010) version 6.50, a computerized analytical tool based on the HCM, was utilized for the freeway segment and intersection operational analysis. HCS 2010 is representative of macroscopic models that describe traffic flow in the aggregate and is based on deterministic relationships developed through past research on traffic flow.

The following sections further describe the methodologies used and the types of HCS analyses applied.

Basic Freeway Segment Level of Service

LOS analyses for the basic freeway elements were performed following Chapter 11 procedures (Basic Freeway Segments) of the HCM. For freeway segments, LOS is defined in terms of traffic stream density, as shown in TABLE 1. By definition, basic freeway segments are segments of the freeway that are outside of the influence area of ramps or weaving sections. Per HCM definition, freeway ramps have an influence distance of 1,500 feet upstream or downstream of ramp junctions. The influence distance of a weaving section between ramp junctions varies based on geometry and volume. Only freeway segments outside of the influence area of ramp junctions and weaving sections were evaluated as basic freeway segments, unless noted otherwise.

Table 1. Freeway LOS Definitions

LOS	Density Range $\left(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}^{*}\right)$
A	$0-11$
B	$>11-18$
C	$>18-26$
D	$>26-35$
E	$>35-45$
F	Demand exceeds capacity
	>45

[^0]
Weave Segment Level of Service

Weave segments were analyzed based on Chapter 12 procedures (Freeway Weaving Segments) of the HCM. Weaving is defined as the crossing of two or more traffic streams traveling in the same direction. Weaving areas generally occur when a merge area is closely followed by a diverge area, or when an entrance ramp is closely followed by an exit ramp connected by an auxiliary lane. LOS for weaving operations is related to the average density of all vehicles in the section. For locations with weaving traffic, ramp-to-ramp flows were estimated based on the Sioux Falls travel demand model. Based on the assumed ramp-toramp flows, ramp-to-freeway, freeway-to-ramp, and freeway-to-freeway flows could be calculated using flow conservation from the balanced sub-area volume set. The density range for 'Freeway Weaving Segments' shown in TABLE 2 was used when evaluating weaving segments bounded by entry/exit ramps.

Table 2. Weaving LOS Definitions

LOS	Density Range (pc/mi/ln)	
	Freeway Weaving Segments	Weaving Segments on Multilane Highways or C-D Roadways
A	≤ 10	≤ 12
B	$>10-20$	$>12-24$
C	$>20-28$	$>24-32$
D	$>28-35$	$>32-36$
E	>35	>36
F	Demand Exceeds Capacity	Demand Exceeds Capacity

* Passenger cars per mile per lane

Freeway Merge and Diverge Segment Level of Service

Freeway merge and diverge segments were analyzed based on HCM Chapter 13 procedures (Freeway Merge and Diverge Segments). Acceleration and deceleration length of a freeway merge or diverge segment is measured from the point at which the edges of the ramp and freeway lanes converge (gore) to the end of the taper segment connecting the ramp to the freeway. By definition, the LOS for a typical freeway merge or diverge segment is based on the average density of vehicles in the influence area (defined by the $\boldsymbol{H C M}$ as 1,500 feet upstream or downstream) of the ramp, as described in TABLE 3.

Table 3. Freeway Merge and Diverge LOS Definitions

LOS	Density Range ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)
A	≤ 10
B	$>10-20$
C	$>20-28$
D	$>28-35$
E	>35
F	Demand Exceeds Capacity

* Passenger cars per mile per lane

For this study, LOS C was determined to be the critical threshold for mainline and ramp locations.

Signalized Intersection Level of Service

Key signalized intersections were analyzed based on HCM Chapter 18 procedures (Signalized Intersections). LOS for signalized intersections is evaluated based on control delay per vehicle (in seconds per vehicle), shown in TABLE 4. Control delay is the portion of the total delay attributed to traffic signal operation and includes initial deceleration delay, queue move-up time, stopped delay and final acceleration delay.

Table 4. Signalized Intersection LOS Definitions

Control $\left.\begin{array}{c}\text { Delay per Vehicle } \\ (\mathrm{s} / \mathrm{cen}\end{array}\right)$	LOS by Volume-to-Capacity Ratio $\mathrm{v} / \mathrm{c} \leq 1.0$	
≤ 10	A	$\mathrm{v} / \mathrm{c}>1.0$
$>10-20$	B	F
$>20-35$	C	F
$>35-55$	D	F
$>55-80$	E	F
>80	F	F

*Seconds per vehicle

Unsignalized Intersection Level of Service

Key unsignalized intersections were analyzed based on HCM Chapters 19 procedures (TwoWay Stop-Controlled Intersections). LOS for unsignalized intersections is evaluated based on control delay per vehicle (in seconds per vehicle), shown in TABLE 5. For two-way stopcontrolled intersections with stop control on the side-street, the LOS is measured separately for each individual movement. Results of the two-way stop controlled intersection analysis were reported as the worst-case stop-controlled approach.

Table 5. Unsignalized Intersection LOS Definitions

Control Delay per Vehicle $(\mathrm{s} / \mathrm{veh}$	LOS by Volume-to-Capacity Ratio	
	$\mathrm{v} / \mathrm{c} \leq 1.0$	$\mathrm{v} / \mathrm{c}>1.0$
≤ 10	A	F
$>10-15$	B	F
$>15-25$	C	F
$>25-35$	D	F
$>35-50$	E	F
>50	F	F

* Seconds per vehicle

LOS 'C' is typically preferred for the average intersection operations during the peak period traffic conditions of a project horizon year (beyond 20 years from existing), though LOS 'D' has generally been considered acceptable. For this study, LOS 'D' was used as the worst allowable LOS for future year intersection operations when identifying proposed improvements.

Appendix B2-

Existing HCS 2010 Reports

\qquad

Analyst:	JKM
Agency/Co.:	HDR

Date Performed: 11/15/2013

Analysis Time Period: AM Peak
Intersection: Cliff Ave \& I-229 SB On-Ramp

Jurisdiction: Sioux Falls, SD
Units: U. S. Customary
Analysis Year: 2013
Project ID: I-229 MIS
East/West Street: I-229 SB On-Ramp
North/South Street: Cliff Ave
Intersection Orientation: NS Study period (hrs): 0.25

Approach	NB	SB	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	L						LR	
v (vph)	408						0	
C(m) (vph)	759							
v/c	0.54							
95\% queue length	3.25							
Control Delay	15.1							
LOS	C							
Approach Delay								
Approach LOS								

Phone:
E-Mail:

Fax:

TWO-WAY STOP CONTROL(TWSC) ANALYSIS \qquad
Analyst: JKM
Agency/Co.:
HDR
Date Performed: 11/15/2013
Analysis Time Period: AM Peak
Intersection: Cliff Ave \& I-229 SB On-Ramp
Jurisdiction: Sioux Falls, SD
Units: U. S. Customary
Analysis Year: 2013
Project ID: I-229 MIS
East/West Street: I-229 SB On-Ramp
North/South Street: Cliff Ave
Intersection Orientation: NS Study period (hrs): 0.25

| | Pedestrian Volumes | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Movements | 13 | 14 | 15 | 16 |
| Flow (ped/hr) Adjustments___ | 0 | 0 | 0 | 0 |

```
Lane Width (ft)
    12.0 12.0 12.0 12.0
    4.0 4.0 4.0 4.0
llloc) 
```

\qquad
Upstream Signal Data

		Prog. Flow vph	Sat Flow vph	Arrival Type	Green Time sec	Cycle Length sec	Prog. Speed mph	Distance to Signal feet
S 2	Left-Turn	0	1800	3	0	100	30	600
	Through	1320	1800	4	52	100	30	600
S 5	Left-Turn	0	1800	3	0	100	30	200
	Through	471	1800	4	55	100	30	200

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

| | Movement 2 | Movement 5 |
| :--- | :--- | :--- | :--- |
| Shared ln volume, major th vehicles: | | |
| Shared ln volume, major rt vehicles: | | |
| Sat flow rate, major th vehicles: | | |
| Sat flow rate, major rt vehicles: | | |
| Number of major street through lanes: | | |

Worksheet 4-Critical Gap and Follow-up Time Calculation

Critical Gap Calculation								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
t (c, base)	4.1					7.5		6.2
$t(c, h v)$	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
$\mathrm{P}(\mathrm{hv})$	2					2		2
$t(c, g)$			0.20	0.20	0.10	0.20	0.20	0.10
Percent Gradet($3,1 \mathrm{t})$			0.00	0.00	0.00	0.00	0.00	0.00
	0.00					0.70		0.00
t (C, T) : 1-stage	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2 -stage	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
$t(c) \quad 1$-stage	4.1					6.8		6.2
	4.1					5.8		6.2
Follow-Up Time Calculations								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
t (f, base)	2.20					3.50		3.30
$t(f, H V)$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
P (HV)	2					2		2
t (f)	2.2					3.5		3.3

Worksheet 5-Effect of Upstream Signals
Computation 1 -Queue Clearance Time at Upstream Signal

Movement 2
V(t) $V(l$, prot) $V(t) \quad V(l, p r o t)$

| V prog | 1320 | 0 | 471 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Total Saturation Flow Rate, s (vph)	3600	3600	3600	3600
Arrival Type	4	3	4	3
Effective Green, g (sec)	52	0	55	0
Cycle Length, C (sec)	100	100	100	100
Rp (from Exhibit 16-11)	1.333	1.000	1.333	1.000
Proportion vehicles arriving on green P	0.693	0.000	0.733	0.000
g (q1)	11.2	0.0	3.5	0.0
g (q2)	10.8	0.0	0.7	0.0
g (q)	22.0	0.0	4.2	0.0

Computation 2-Proportion of TWSC Intersection Time blocked Movement 2 Movement 5				
alpha		. 350		350
beta		. 741		. 741
Travel time, t(a) (sec)		. 605		535
Smoothing Factor, F		221		460
Proportion of conflicting flow, f	1.000	1.000	1.000	1.000
Max platooned flow, V(c,max)	3585	0	3333	0
Min platooned flow, V(c,min)	2000	2000	2000	2000
Duration of blocked period, t(p)	26.9	0.0	4.0	0.0
Proportion time blocked, p		269		040
Computation 3-Platoon Event Periods	Result			
p (2)	0.269			
p(5)	0.040			
p (dom)	0.269			
p(subo)	0.040			
Constrained or unconstrained?	U			

Proportion unblocked	(1)	(2)	(3)
for minor	Single-stage	Two-Stage	Process
movements, $\mathrm{p}(\mathrm{x})$	Process	Stage I	Stage
p (1)	0.960		
p (4)			
$p(7)$			
p (8)			
p (9)			
p(10)	0.711	0.960	0.731
p (11)			
p (12)	0.960		

Computation 4 and 5								
Single-Stage Process								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
V c, X	927					2470		464
S	3000					3000		3000
Px	0.960					0.711		0.960
V c, u, x	840					2255		358
C r, x	791					35		685
C plat, x	759					25		658
Two-Stage Process								
			8		10			

Stage1 Stage2 Stage1 Stage2	Stage1	Stage 2	Stage1	Stage 2
$V(c, x)$	802	1668		
S	3000	3000		
P (x)	0.960	0.731		
$V(c, u, x)$	710	1178		
$C(r, x)$	448	255		
$C(p l a t, x)$	430	186		
Worksheet 6-Impedance and Capacity Equations				
Step 1: RT from Minor St.	9		12	
Conflicting Flows			464	
Potential Capacity			658	
Pedestrian Impedance Factor	1.00		1.00	
Movement Capacity			658	
Probability of Queue free St.	1.00		1.00	
Step 2: LT from Major St.	4		1	
Conflicting Flows			927	
Potential Capacity			759	
Pedestrian Impedance Factor	1.00		1.00	
Movement Capacity			759	
Probability of Queue free St.	1.00		0.46	
Maj L-Shared Prob Q free St.				
Step 3: TH from Minor St.	8		11	
Conflicting Flows				
Potential Capacity				
Pedestrian Impedance Factor	1.00		1.00	
Cap. Adj. factor due to Impeding mvmnt	0.46		0.46	
Movement Capacity				
Probability of Queue free St.	1.00		1.00	
Step 4: LT from Minor St. 70				
Conflicting Flows			2470	
Potential Capacity			25	
Pedestrian Impedance Factor 1.00			1.00	
Maj. L, Min T Impedance factor 0.46				
Maj. L, Min T Adj. Imp Factor. 0.58				
Cap. Adj. factor due to Impeding mvmnt	0.58		0.46	
Movement Capacity			12	

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St. | 8 | 11 |
| :--- | :--- | :--- | :--- |

Part 1 - First Stage
Conflicting Flows
Potential Capacity 51422
Pedestrian Impedance Factor 1.001 .00
Cap. Adj. factor due to Impeding mvmnt 0.46
Movement Capacity 24422
Probability of Queue free St. 1.001 .00

Part 2 - Second Stage		
Conflicting Flows		
Potential Capacity	369	51
Pedestrian Impedance Factor	1.00	1.00
Cap. Adj. factor due to Impeding mvmnt	1.00	0.46
Movement Capacity	369	24
Part 3 - Single Stage		
Conflicting Flows		
Potential Capacity		
Pedestrian Impedance Factor	1.00	1.00
Cap. Adj. factor due to Impeding mvmnt	0.46	0.46
Movement Capacity		
Result for 2 stage process:		
a	0.91	0.91
Y		
C t		
Probability of Queue free St.	1.00	1.00
Step 4: LT from Minor St.	7	10
Part 1 - First Stage		
Conflicting Flows		802
Potential Capacity	44	430
Pedestrian Impedance Factor	1.00	1.00
Cap. Adj. factor due to Impeding mvmnt	0.46	1.00
Movement Capacity	20	430
Part 2 - Second Stage		
Conflicting Flows		1668
Potential Capacity	763	186
Pedestrian Impedance Factor	1.00	1.00
Cap. Adj. factor due to Impeding mvmnt	1.00	0.46
Movement Capacity	763	86
Part 3 - Single Stage		
Conflicting Flows		2470
Potential Capacity		25
Pedestrian Impedance Factor	1.00	1.00
Maj. L, Min T Impedance factor	0.46	
Maj. L, Min T Adj. Imp Factor.	0.58	
Cap. Adj. factor due to Impeding mvmnt	0.58	0.46
Movement Capacity		12
Results for Two-stage process:		
a	0.91	0.91
Y		5.65
C t		68

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

Movement		8	9	10	11	12
	L	T	R	L	T	R
C sep				68		658
Volume				0		0
Delay						
Q sep						
Q sep +1						
round (Qsep +1)						
$n \max$						
C sh						
SUM C sep						
n						
C act						

Worksheet 10-Delay, Queue Length, and Level of Service

Movement	1	4	7	8	9	10	11	12
Lane Config	L						LR	
v (vph)	408						0	
C(m) (vph)	759							
v/c	0.54							
95\% queue length	3.25							
Control Delay	15.1							
LOS	C							
Approach Delay								
Approach LOS								

Worksheet 11-Shared Major LT Impedance and Delay

	Movement 2	Movement 5
p(oj)	0.46	1.00
v(il), Volume for stream 2 or 5		
v(i2), Volume for stream 3 or 6		
s(il), Saturation flow rate for stream 2 or 5		
s(i2), Saturation flow rate for stream 3 or 6		
P* (oj)		
d(M,LT), Delay for stream 1 or 4	15.1	
N, Number of major street through lanes d(rank,1) Delay for stream 2 or 5		

\qquad

Analyst:	JKM
Agency/Co.:	HDR

Date Performed: 11/15/2013

Analysis Time Period: PM Peak
Intersection: Cliff Ave \& I-229 SB On-Ramp

Jurisdiction: Sioux Falls, SD
Units: U. S. Customary
Analysis Year: 2013
Project ID: I-229 MIS
East/West Street: I-229 SB On-Ramp
North/South Street: Cliff Ave
Intersection Orientation: NS Study period (hrs): 0.25

Approach	NB	SB		b		Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	L						LR	
v (vph)	176						0	
C(m) (vph)	333							
v/c	0.53							
95\% queue length	2.93							
Control Delay	27.3							
LOS	D							
Approach Delay								
Approach LOS								

Phone:
E-Mail:

Fax:

TWO-WAY STOP CONTROL(TWSC) ANALYSIS \qquad
Analyst: JKM
Agency/Co.:
HDR
Date Performed:
11/15/2013
Analysis Time Period: PM Peak
Intersection: Cliff Ave \& I-229 SB On-Ramp
Jurisdiction: Sioux Falls, SD
Units: U. S. Customary
Analysis Year: 2013
Project ID: I-229 MIS
East/West Street: I-229 SB On-Ramp
North/South Street: Cliff Ave
Intersection Orientation: NS Study period (hrs): 0.25

| | Pedestrian Volumes | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Movements | 13 | 14 | 15 | 16 |
| Flow (ped/hr) Adjustments___ | 0 | 0 | 0 | 0 |

```
Lane Width (ft)
    12.0 12.0 12.0 12.0
    4.0 4.0 4.0 4.0
llloc) 
```

\qquad
Upstream Signal Data

		Prog. Flow vph	Sat Flow vph	Arrival Type	Green Time sec	Cycle Length sec	Prog. Speed mph	$\begin{gathered} \text { Distance } \\ \text { to Signal } \\ \text { feet } \end{gathered}$
S 2	Left-Turn	0	1800	3	0	100	30	600
	Through	1056	1800	4	54	100	30	600
S 5	Left-Turn	0	1800	3	0	100	30	200
	Through	664	1800	4	54	100	30	200

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

| | Movement 2 | Movement 5 |
| :--- | :--- | :--- | :--- |
| Shared ln volume, major th vehicles: | | |
| Shared ln volume, major rt vehicles: | | |
| Sat flow rate, major th vehicles: | | |
| Sat flow rate, major rt vehicles: | | |
| Number of major street through lanes: | | |

Worksheet 4-Critical Gap and Follow-up Time Calculation

Critical Gap Calculation								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
$t(c, b a s e)$	4.1					7.5		6.2
t (c, hv)	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
P (hv)	3					3		3
t (c, g)			0.20	0.20	0.10	0.20	0.20	0.10
Percent Grade			0.00	0.00	0.00	0.00	0.00	0.00
$t(3,1 t)$	0.00					0.70		0.00
t(c, T) : 1-stage	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$2-s t a g e$	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
$t(c) \quad 1$ 1-stage	4.2					6.9		6.3
	4.2					5.9		6.3
Follow-Up Time Calculations								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
$t(f, b a s e)$	2.20					3.50		3.30
$t(f, H V)$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
P (HV)	3					3		3
t (f)	2.2					3.5		3.3

Worksheet 5-Effect of Upstream Signals
Computation 1 -Queue Clearance Time at Upstream Signal

Movement 2
Movement 5
V(t) $V(l$, prot) $V(t) \quad V(l, p r o t)$

| V prog | 1056 | 0 | 664 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Total Saturation Flow Rate, s (vph)	3600	3600	3600	3600	
Arrival Type		4	3	4	3
Effective Green, 9 (sec)		54	0	54	0
Cycle Length, C (sec)	100	100	100	100	
Rp (from Exhibit 16-11)		1.333	1.000	1.333	1.000
Proportion vehicles arriving on green P	0.720	0.000	0.720	0.000	
g(q1)		8.2	0.0	5.2	0.0
g(q2)		5.3	0.0	1.7	0.0
(q)		13.5	0.0	6.8	0.0

Computation 3-Platoon Event Periods	Result
p(2)	0.153
p(5)	0.069
p(dom)	0.153
p(subo)	0.069
Constrained or unconstrained?	U

Proportion		
unblocked		
for minor		
movements,	(1)	(2)
$p(1)$	Single-stage	Two-Stage Process
$p(4)$	Process	Stage I

Computation 4 and 5								
Single-Stage Process								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
V c, X	1813					2313		906
S	3000					3000		3000
Px	0.931					0.813		0.931
V c, u, x	1724					2155		750
C r, x	358					40		407
C plat, x	333					33		379
Two-Stage Process								
			8		10			

Stage1 Stage2 Stage1 Stage2	Stage1	Stage 2	Stage1	Stage 2
$V(c, x)$	1608	705		
S	3000	3000		
P (x)	0.931	0.847		
$V(c, u, x)$	1504	292		
$C(r, x)$	169	729		
$C(p l a t, x)$	157	618		
Worksheet 6-Impedance and Capacity Equations				
Step 1: RT from Minor St.	9		12	
Conflicting Flows			906	
Potential Capacity			379	
Pedestrian Impedance Factor	1.00		1.00	
Movement Capacity			379	
Probability of Queue free St.	1.00		1.00	
Step 2: LT from Major St.	4		1	
Conflicting Flows			1813	
Potential Capacity			333	
Pedestrian Impedance Factor	1.00		1.00	
Movement Capacity			333	
Probability of Queue free St.	1.00		0.47	
Maj L-Shared Prob Q free St.				
Step 3: TH from Minor St.	8		11	
Conflicting Flows				
Potential Capacity				
Pedestrian Impedance Factor	1.00		1.00	
Cap. Adj. factor due to Impeding mvmnt	0.47		0.47	
Movement Capacity				
Probability of Queue free St.	1.00		1.00	
Step 4: LT from Minor St.	7		10	
Conflicting Flows			2313	
Potential Capacity			33	
Pedestrian Impedance Factor	1.00		1.00	
Maj. L, Min T Impedance factor	0.47			
Maj. L, Min T Adj. Imp Factor.	0.58			
Cap. Adj. factor due to Impeding mvmnt	0.58		0.47	
Movement Capacity			16	

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St. | 8 | 11 |
| :--- | :--- | :--- | :--- |

Part 1 - First Stage
Conflicting Flows
Potential Capacity 373173
Pedestrian Impedance Factor 1.001 .00
Cap. Adj. factor due to Impeding mvmnt 0.47 1.00
Movement Capacity
$176 \quad 173$
Probability of Queue free St. 1.001 .00

```
Part 2 - Second Stage
```

Conflicting Flows
Potential Capacity 135
Pedestrian Impedance Factor 1.001 .00
Cap. Adj. factor due to Impeding mvmnt 1.00 . 07
Movement Capacity
135176
Part 3 - Single Stage
Conflicting Flows
Potential Capacity
Pedestrian Impedance Factor 1.001 .00
Cap. Adj. factor due to Impeding mvmnt
0.47
0.47
Movement Capacity

Result for 2 stage process:		
a		
Y	0.91	0.91
C t		
Probability of Queue free St.	1.00	1.00
Step 4: LT from Minor St.	7	10
Part 1 First Stage		
Conflicting Flows	385	1608
Potential Capacity	1.00	157
Pedestrian Impedance Factor	0.47	182
Cap. Adj. factor due to Impeding mvmnt		1.00
Movement Capacity		157

Part 2 - Second Stage		
Conflicting Flows	522	705
Potential Capacity	618	
Pedestrian Impedance Factor	1.00	1.00
Cap. Adj. factor due to Impeding mvmnt	1.00	0.47
Movement Capacity	522	291

Part 3 - Single Stage	
Conflicting Flows	
Potential Capacity	
Pedestrian Impedance Factor	1.0013
Maj. L, Min T Impedance factor	0.47
Maj. L, Min T Adj. Imp Factor.	0.58
Cap. Adj. factor due to Impeding mvmnt	0.58
Movement Capacity	

Results for Two-stage process:			
a	0.91	0.91	
y			0.51
$\mathrm{C} t$			100

Worksheet 8-Shared Lane Calculations

Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (vph)			0	0		
Movement Capacity (vph)		100	379			
Shared Lane Capacity (vph)						

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

Movement		8	9		11	
	L	T	R	L	T	R
C sep				100		379
Volume				0		0
Delay						
Q sep						
Q sep +1						
round (Qsep +1)						
n max						
C sh						
SUM C sep						
n						
C act						

Worksheet 10-Delay, Queue Length, and Level of Service

Movement	1	4	7	8	9	10	11	12
Lane Config	L						LR	
v (vph)	176						0	
C(m) (vph)	333							
v/c	0.53							
95\% queue length	2.93							
Control Delay	27.3							
LOS	D							
Approach Delay								
Approach LOS								

Worksheet 11-Shared Major LT Impedance and Delay

	Movement 2	Movement 5
$p(o j)$	0.47	1.00
v(il), Volume for stream 2 or 5		
$\mathrm{v}(\mathrm{i} 2), \mathrm{Volume} \mathrm{for} \mathrm{stream} 3$ or 6		
s(il), Saturation flow rate for stream 2 or 5		
s(i2), Saturation flow rate for stream 3 or 6		
P* (oj)		
d(M,LT), Delay for stream 1 or 4	27.3	
N, Number of major street through lanes d(rank,1) Delay for stream 2 or 5		

FREEWAY WEAVING WORKSHEET				
General Information			Site Information	
Analyst Agency/Company Date Performed Analysis Time Period	JKM HDR 11/18/2013 AM Peak		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-229 Northbound Minnesota Ave to Cliff Ave 2013
Project Description I-229 MIS				
Inputs				
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS		$\begin{array}{r} \text { One-Sided } \\ 3 \\ 3130 \mathrm{ft} \\ 70 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type	$\begin{array}{r}\text { Freeway } \\ 15 \\ 2400 \\ \text { Level } \\ \hline\end{array}$

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	fp_{p}	v (pc/h)
V_{FF}	1460	0.80	6	0	1.5	1.2	0.971	1.00	1880
$\mathrm{V}_{\text {RF }}$	275	0.80	3	0	1.5	1.2	0.985	1.00	349
$V_{\text {FR }}$	439	0.80	3	0	1.5	1.2	0.985	1.00	557
$\mathrm{V}_{\text {RR }}$	63	0.80	3	0	1.5	1.2	0.985	1.00	80
V_{NW}	1960							$\mathrm{V}=$	2783
V_{w}	906								
VR	0.316								

Configuration Characteristics
Minimum maneuver lanes, N_{WL}
Interchange density, ID
Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$
Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$
Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$

2 lc	Minimum weaving lane changes, $\mathrm{LC}_{\mathrm{MIN}}$	$906 \mathrm{lc} / \mathrm{h}$
$1.0 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	$1231 \mathrm{lc} / \mathrm{h}$
$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{NW}}$	$1522 \mathrm{lc/h}$
$1 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\mathrm{ALL}}$	$2753 \mathrm{lc} / \mathrm{h}$
$\mathrm{lc} / \mathrm{pc}$	Non-weaving vehicle index, I_{NW}	613

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	2783 veh/h	Weaving intensity factor, W	0.204
Weaving segment capacity, C_{w}	6405 veh/h	Weaving segment speed, S	59.4 mph
Weaving segment v / c ratio	0.434	Average weaving speed, S_{w}	60.7 mph
Weaving segment density, D	16.1 pc/mi/n	Average non-weaving speed, S_{NW}	58.9 mph
Level of Service, LOS	B	Maximum weaving length, $L_{\text {MAX }}$	5757 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

FREEWAY WEAVING WORKSHEET								
General Information				Site Information				
Analyst Agency/Company Date Performed Analysis Time Period	JKM HDR 11/18/2013 PM Peak			Freeway/Dir of Travel Weaving Segment Location Analysis Year			I-229 Northbound Minnesota Ave to Cliff Ave 2013	
Project Description I-229 MIS								
Inputs								
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS			$\begin{array}{r} \text { One-Sided } \\ 3 \\ 3130 \mathrm{ft} \\ 70 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				Freeway 15 2400 Level
Conversions to pc/h Under Base Conditions								
V (ven/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
FF 1381	0.93	6	0	1.5	1.2	0.971	1.00	1529
$\mathrm{V}_{\text {RF }}$ 440	0.93	3	0	1.5	1.2	0.985	1.00	480
$\mathrm{F}_{\text {FR }}$ 458	0.93	3	0	1.5	1.2	0.985	1.00	500
V_{RR} 21	0.93	3	0	1.5	1.2	0.985	1.00	23
N_{NW} 1552							V =	2459
V_{w} 980 R								
VR 0.387								
Configuration Characteristics								
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$ Weaving lane changes, LC_{w} Non-weaving lane changes, $\mathrm{LC}_{\mathrm{NW}}$ Total lane changes, $\mathrm{LC}_{\mathrm{ALL}}$ Non-weaving vehicle index, I_{NW}				$980 \mathrm{lc} / \mathrm{h}$ $1305 \mathrm{lc} / \mathrm{h}$ $1438 \mathrm{lc} / \mathrm{h}$ $2743 \mathrm{lc} / \mathrm{h}$ 486
Weaving Segment Speed, Density, Level of Service, and Capacity								
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS			2459 veh/h 6020 veh/h 0.408 $.2 \mathrm{pc} / \mathrm{mi} / \mathrm{n}$ B	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, $S_{N w}$ Maximum weaving length, $L_{\text {MAX }}$				0.204 59.6 mph 60.7 mph 58.9 mph 6536 ft
Notes								
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".								

FREEWAY WEAVING WORKSHEET					
General Information			Site Information		
Analyst Agency/Company Date Performed Analysis Time Period	JKM HDR 11/18/2013 AM Peak		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-229 Northbound Cliff Ave to 26th St 2013	
Project Description I-229 MIS					
Inputs					
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS		$\begin{array}{r} \text { One-Sided } \\ 3 \\ 2750 \mathrm{ft} \\ 69 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type		$\begin{array}{r}\text { Freeway } \\ 15 \\ 2400 \\ \text { Level } \\ \hline\end{array}$

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$\mathrm{VFF}_{\text {F }}$	1280	0.80	9	0	1.5	1.2	0.957	1.00	1672
$\mathrm{V}_{\text {RF }}$	431	0.80	3	0	1.5	1.2	0.985	1.00	547
$\mathrm{V}_{\text {FR }}$	455	0.80	3	0	1.5	1.2	0.985	1.00	577
V_{RR}	10	0.80	3	0	1.5	1.2	0.985	1.00	13
V_{NW}	1685							$V=$	2689
$\mathrm{v}_{\text {w }}$	1124								
VR	0.400								

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	$21 c$	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$	$1124 \mathrm{lc/h}$
Interchange density, ID	$1.0 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	$1426 \mathrm{lc} / \mathrm{h}$
Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$	$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$	$1260 \mathrm{lc} / \mathrm{h}$
Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$	$1 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\text {ALL }}$	$2686 \mathrm{lc} / \mathrm{h}$
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	lc/pc	Non-weaving vehicle index, I_{NW}	463
Weaving Segment Speed, Density, Level of Service, and Capacity			
aving segment flow rate, v	2689 veh/h	Weaving intensity factor, W	0.222
Weaving segment capacity, c_{w}	5740 veh/h	Weaving segment speed, S	57.5 mph
Weaving segment v/c ratio	0.468	Average weaving speed, S_{w}	59.2 mph
Weaving segment density, D	$16.3 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	Average non-weaving speed, S_{NW}	56.4 mph
Level of Service, LOS	B	Maximum weaving length, $L_{\text {MAX }}$	6683 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

FREEWAY WEAVING WORKSHEET					
General Information			Site Information		
Analyst Agency/Company Date Performed Analysis Time Period	JKM HDR 11/18/2013 PM Peak		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-229 Northbound Cliff Ave to 26th St 2013	
Project Description I-229 MIS					
Inputs					
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS		$\begin{array}{r} \text { One-Sided } \\ 3 \\ 2750 \mathrm{ft} \\ 69 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type		$\begin{array}{r} \text { Freeway } \\ 15 \\ 2400 \\ \text { Leve } \\ \hline \hline \end{array}$

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	f_{p}	v (pc/h)
V_{FF}	1168	0.93	9	0	1.5	1.2	0.957	1.00	1312
V_{RF}	251	0.93	3	0	1.5	1.2	0.985	1.00	274
$\mathrm{V}_{\text {FR }}$	653	0.93	3	0	1.5	1.2	0.985	1.00	713
V_{RR}	10	0.93	3	0	1.5	1.2	0.985	1.00	11
N_{NW}	1323							V =	2211
$\mathrm{v}_{\text {w }}$	987								
VR	0.427								

Configuration Characteristics
Minimum maneuver lanes, N_{WL}
Interchange density, ID
Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$
Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$
Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$

2 lC	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$	$987 \mathrm{Ic} / \mathrm{h}$
$1.0 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{W}	1289 lch
$1 \mathrm{lc} / \mathrm{pC}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{NW}}$	$1185 \mathrm{Ic} / \mathrm{h}$
$1 \mathrm{cc} / \mathrm{pC}$	Total lane changes, $\mathrm{LC}_{\text {ALL }}$	$2474 \mathrm{lc} / \mathrm{h}$
$\mathrm{IC} / \mathrm{pC}$	Non-weaving vehicle index, I_{NW}	364

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	2211 veh/h	Weaving intensity factor, W	0.208
Weaving segment capacity, C_{w}	5375 veh/h	Weaving segment speed, S	58.8 mph
Weaving segment v / c ratio	0.411	Average weaving speed, S_{w}	59.7 mph
Weaving segment density, D	$13.1 \mathrm{pc} / \mathrm{mi/l/n}$	Average non-weaving speed, S_{NW}	58.2 mph
Level of Service, LOS	B	Maximum weaving length, $\mathrm{L}_{\mathrm{MAX}}$	6989 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of

Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		JKM HDR 11/18/2013 AM Peak			Freeway/Dir of Travel Weaving Segment Location Analysis Year			I-229 Southbound 26th St to Cliff Ave 2013	
Project Description I-229 MIS									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				One-Sided 3 2670ft 69 mph	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, C_{FL} Terrain type				Freeway 15 2400 Level
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	$\mathrm{fp}^{\text {f }}$	v (pc/h)
$\mathrm{V}_{\text {FF }}$	1234	0.80	9	0	1.5	1.2	0.957	1.00	1612
$\mathrm{V}_{\text {RF }}$	682	0.80	3	0	1.5	1.2	0.985	1.00	865
$\mathrm{V}_{\text {FR }}$	210	0.80	3	0	1.5	1.2	0.985	1.00	266
V_{RR}	10	0.80	3	0	1.5	1.2	0.985	1.00	13
V_{NW}	1625							V =	2638
$\mathrm{V}_{\text {w }}$	1131								
VR	0.410								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				2 lc $1.0 \mathrm{int} / \mathrm{mi}$ $1 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$ Weaving lane changes, LC_{w} Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, $I_{N W}$				$1131 \mathrm{lc} / \mathrm{h}$ $1429 \mathrm{lc} / \mathrm{h}$ 1204 lc/h $2633 \mathrm{lc} / \mathrm{h}$ 434
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v / c ratio Weaving segment density, D Level of Service, LOS				2638 veh/h 5596 veh/h 0.471 $6.0 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ B	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{Nw} Maximum weaving length, $L_{\text {Max }}$				
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									

FREEWAY WEAVING WORKSHEET					
General Information			Site Information		
Analyst Agency/Company Date Performed Analysis Time Period	JKM HDR 11/18/2013 PM Peak		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-229 Southbound 26th St to Cliff Ave 2013	
Project Description I-229 MIS					
Inputs					
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS		$\begin{array}{r} \text { One-Sided } \\ 3 \\ 2670 \mathrm{ft} \\ 69 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\text {IFL }}$ Terrain type		Freeway 15 2400 Level

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$\mathrm{VFF}_{\text {F }}$	1397	0.93	8	0	1.5	1.2	0.962	1.00	1562
$\mathrm{V}_{\text {RF }}$	533	0.93	3	0	1.5	1.2	0.985	1.00	582
$\mathrm{V}_{\text {FR }}$	382	0.93	3	0	1.5	1.2	0.985	1.00	417
$V_{\text {RR }}$	10	0.93	3	0	1.5	1.2	0.985	1.00	11
V_{NW}	1573							V =	2474
$\mathrm{v}_{\text {w }}$	999								
VR	0.388								

Configuration Characteristics
Minimum maneuver lanes, N_{WL}
Interchange density, ID
Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$
Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$
Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$

2 lc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$	$999 \mathrm{lc/h}$
$1.0 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	1297 Ic/h
$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{NW}}$	$1193 \mathrm{lc/h}$
$1 \mathrm{lc/pc}$	Total lane changes, $\mathrm{LC}_{\text {ALL }}$	$2490 \mathrm{lc/h}$
lc/pc	Non-weaving vehicle index, $\mathrm{I}_{\text {Nw }}$	420

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	2474 veh/h	Weaving intensity factor, W	0.214
Weaving segment capacity, C_{w}	5941 veh/h	Weaving segment speed, S	58.4 mph
Weaving segment v / c ratio	0.416	Average weaving speed, S_{w}	59.5 mph
Weaving segment density, D	14.7 pc/mi/l/	Average non-weaving speed, S_{NW}	57.7 mph
Level of Service, LOS	B	Maximum weaving length, $\mathrm{L}_{\mathrm{MAX}}$	655 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is " F ".

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		JKM HDR 11/18/2013 AM Peak			Freeway/Dir of Travel Weaving Segment Location Analysis Year			I-229 Southbound Cliff Ave to Minnesota Ave 2013	
Project Description I-229 MIS									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				One-Sided 3 3120ft 67 mph	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				Freeway Leve
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
$\mathrm{NFF}^{\text {F }}$	1639	0.80	6	0	1.5	1.2	0.971	1.00	2110
$\mathrm{V}_{\text {RF }}$	429	0.80	3	0	1.5	1.2	0.985	1.00	544
F_{FR}	277	0.80	3	0	1.5	1.2	0.985	1.00	351
V_{RR}	99	0.80	3	0	1.5	1.2	0.985	1.00	126
N_{NW}	2236							$\mathrm{V}=$	3040
$\mathrm{V}_{\text {w }}$	895								
VR	0.286								
Configuration Characteristics									
Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$ Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				2 Ic $1.0 \mathrm{int} / \mathrm{mi}$ $1 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$ Weaving lane changes, LC_{w} Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, I_{Nw}				$895 \mathrm{lc} / \mathrm{h}$ $1220 \mathrm{lc} / \mathrm{h}$ $1574 \mathrm{lc} / \mathrm{h}$ 2794 lc/h 698
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v / c ratio Weaving segment density, D Level of Service, LOS				3040 veh/h 6329 veh/h 0.480 8.6 pc/milln B	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{Nw} Maximum weaving length, $L_{\text {MAX }}$				0.207 56.2 mph 58.1 mph 55.5 mph 5433 ft
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2013 University of Florida, All Rights Reserved					HCS 2			ted:	17 1:27

FREEWAY WEAVING WORKSHEET				
General Information			Site Information	
Analyst Agency/Company Date Performed Analysis Time Period	JKM HDR 11/18/2013 PM Peak		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-229 Southbound Cliff Ave to Minnesota Ave 2013
Project Description I-229 MIS				
Inputs				
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS		$\begin{array}{r} \text { One-Sided } \\ 3 \\ 3120 \mathrm{ft} \\ 67 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type	$\begin{array}{r}\text { Freeway } \\ 15 \\ 2350 \\ \text { Level } \\ \hline\end{array}$

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	$\mathrm{E}_{\text {R }}$	f_{HV}	fp_{p}	v (pc/h)
$\mathrm{V}_{\text {FF }}$	1559	0.93	6	0	1.5	1.2	0.971	1.00	1727
$\mathrm{V}_{\text {RF }}$	519	0.93	3	0	1.5	1.2	0.985	1.00	566
$\mathrm{V}_{\text {FR }}$	371	0.93	3	0	1.5	1.2	0.985	1.00	405
$\mathrm{V}_{\text {RR }}$	27	0.93	3	0	1.5	1.2	0.985	1.00	29
V_{NW}	1756							V =	2648
V_{w}	971								
VR	0.356								

Configuration Characteristics
Minimum maneuver lanes, N_{WL}
Interchange density, ID
Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$
Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$
Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$

2 lc	Minimum weaving lane changes, $\mathrm{LC}_{\mathrm{MIN}}$	$971 \mathrm{lc} / \mathrm{h}$
$1.0 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	$1296 \mathrm{lc} / \mathrm{h}$
$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{NW}}$	$1475 \mathrm{lc/h}$
$1 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\mathrm{ALL}}$	$2771 \mathrm{lc} / \mathrm{h}$
$\mathrm{lc} / \mathrm{pc}$	Non-weaving vehicle index, I_{NW}	548

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	2648 veh/h	Weaving intensity factor, W	0.206
Weaving segment capacity, C_{w}	6160 veh/h	Weaving segment speed, S	56.5 mph
Weaving segment v / c ratio	0.430	Average weaving speed, $\mathrm{S}_{\text {w }}$	58.1 mph
Weaving segment density, D	16.1 pc/mi/n	Average non-weaving speed, $S_{\text {Nw }}$	55.6 mph
Level of Service, LOS	B	Maximum weaving length, $L_{\text {MAX }}$	6193 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is " F ".

Appendix C. 2035 No-Build and Build Operational Analysis Technical Memorandum

Year 2035 Sub-Study 6 No Build conditions operational analysis included the analysis of 4 signalized intersections, 1 unsignalized intersection, 2 basic freeway segments, and 4 weave segments. All locations were analyzed for the AM peak hour and PM peak hour, based on traffic forecasting procedures utilizing output from the Sioux Falls MPO Sioux Falls travel demand model in Cube Voyager.

The 2035 No-Build volumes are based on the MPO's future travel demand model, reflective of fiscally constrained planned projects included in the 2035 Long Range Transportation Plan (LRTP). The No-Build condition for this study also includes geometric modifications associated with the l-229 Exit 5 ($26^{\text {th }}$ Street) proposed improvements. The LRTP includes capacity-related roadway segment improvements at a high-level, and does not include intersection-level geometrics associated with the improvements. Thus, intersection-level geometrics were assumed for the No-Build condition where necessary in order to capture planned development in the study area.

No-Build "Worst Case" Analysis Results

During the 2035 no-build analysis, the Highway Capacity Software (HCS) 2010 identified capacity constraints at upstream intersections that limited traffic that would get to downstream intersections along a given corridor. In an effort to provide a conservative estimate of future nobuild traffic operations, a procedure was devised to ensure that each study area intersection received the full projected demand. After meetings with the Study Advisory Team (SAT) and Federal Highway Administration (FHWA), it was decided that some of the no-build analysis results may indicate higher projected delays than will actually be realized because not all capacity constraints may be eliminated at upstream intersections as assumed in the analysis. For instance, a roadway may have a future demand that warrants additional capacity, but if the hurdles to adding that capacity are insurmountable, then the roadway would not be widened and continue to meter traffic to downstream intersections. As the no-build traffic analysis results potentially error on the side of higher traffic demand at all study area intersections, that analysis has been named the "Worst Case" scenario.

2010 Highway Capacity Software (HCS 2010) from McTrans was used to conduct no-build traffic operations analysis, in a similar fashion to the existing conditions traffic operations analysis. Common practice for no-build analysis dictates that the geometry of the subject intersection is analyzed under the future projected traffic demand without modifications to geometry such that any anticipated deficiencies in the no-build condition may be identified. One difficulty in maintaining this practice is the software's treatment of adjacent intersections in a connected manner, such that if an upstream intersection has a failing movement (movement demand / movement capacity >1.0) then the demand beyond the capacity threshold is not perpetuated to the downstream intersections. While this operation in the programming of the HCS 2010 software has benefits when conducting a multi-period analysis, the software does not provide a built-in feature to bypass this part of the computations. This results in a situation where intersections downstream of intersections with failing movements only experience a portion of the projected demand. In order to allow each intersection to fully reach its projected demand, the project team developed a method for isolating the traffic operations for groups of
intersections that could all be analyzed in a single HCS 2010 file while still receiving all projected demand. This method is as follows:

1. Develop a master file for the corridor of interest, including all study intersections along the corridor. Master street files were developed sequentially from South to North and West to East.
2. Starting at the southernmost or westernmost intersection, check to see if the southbound or westbound projected demand is fully received at the intersection.
3. If the full demand is not received, then separate the southernmost or westernmost intersection out as its own group (called "Group 1") by making multiple copies of the master corridor file. All intersections not in "Group 1" are currently in "Group 2".
4. Open the HCS file for "Group 1" and make necessary changes to non-"Group 1" intersections to get all projected demand to reach all "Group 1" intersections.
5. Report the LOS for the southernmost or westernmost intersection from the "Group 1" HCS file.
6. Open the HCS file for "Group 2".
7. Check the first "Group 2" intersection (southernmost or westernmost intersection in the group) to see if both major approaches to the subject intersection receive all projected demand.
8. If all northbound or eastbound projected demand is not received at the first "Group 2" intersection, then make necessary changes to the "Group 1" intersection to allow all projected demand to reach the first "Group 2" intersection.
9. If all southbound or eastbound projected demand is not received at the first "Group 2" intersection, then call that intersection "Group 2" and all intersections to the north or east of the intersection as "Group 3".
10. Both conditions from Step 8 and Step 9 may exist at any intersection internal to the corridor.
11. Repeat the process until a set number of groups is established (maximum number of groups is the number of intersections along the corridor) where each group only contains intersections that receive their full projected demand.
12. Report LOS results from the group file to which the intersection of interest belongs.

Upon applying the method to isolated groups of intersections, intersection LOS was reported for the condition where the no-build geometry at each intersection experienced the full projected demand from the 2035 AM and PM peak hour volume sets, even though adjacent intersections under no-build conditions may not have sufficient capacity to convey all projected demand.

This Year 2035 conditions analysis found that ramp terminal intersections and arterials show the LOS at a couple of key intersections has degraded beyond the acceptable threshold of LOS D.

TABLE 1 highlights intersections that do not meet the project specific LOS thresholds.

Table 1. 2035 No-Build Conditions "Worst Case" Deficient Intersections based on Operational Analysis Results

LOCATION	AM	PM
I-229 SB on-ramp \& Cliff Avenue- Worst stop-controlled movement LOS		LOS F
49th Street \& Cliff Avenue	LOS E	

Note: Acceptable Threshold is LOS D for intersections, and LOS C for freeway and ramps.

No-Build "Best Case" Analysis Results

In addition to the "Worst Case" scenario, the SAT and FHWA commissioned HDR to perform a variation of the no-build traffic analysis where no capacity constraints were removed from the study area. As this scenario may potentially error on the side of lower traffic demand, and thus lower delay, this new variation on the no-build traffic analysis has been named the "Best Case" scenario.

Table 2 shows the intersections that changed LOS between "Worst Case" and "Best Case" conditions.

Table 2. LOS Differences between 2035 No-Build "Worst Case" and "Best Case" Scenarios

LOCATION	AM Peak		PM Peak	
	"Worst Case" LOS	"Best Case" LOS	"Worst Case" LOS	"Best Case" LOS
Cliff \& 33rd	C	B		
Cliff \& 41st/l-229 SB Off-Ramp	C	B		

"Worst Case" and "Best Case" Conditions Operational Results

The 2035 no-build "Worst Case" lane geometrics and LOS results for all locations are shown in FIgURE 1. The 2035 No-Build "Worst Case" HCS 2010 Reports can be found in the APPENDIX.

The 2035 no-build "Best Case" lane geometrics and LOS results for all locations are shown in Figure 2. The 2035 No-Build "Best Case" HCS 2010 Reports can be found in the APPENDIX.

Build Conditions Analysis Results

The 2035 Build condition used the same volumes as the 2035 No-Build condition. The 2035 build alternative scenarios were analyzed using HCS 2010 for the AM and PM peak hours. The alternative scenarios analyzed are as follows:

- Cliff-1. NB Cliff to SB I-229 Loop Ramp
- Cliff-6. SPUI, $41^{\text {st }}$ Street Realigned
- Cliff-7. SPUI, SB I-229 Off-Ramp Thru \& Rights at $41^{\text {st }}$ Street

See TABLE 3 for the 2035 Build LOS results for the alternative scenarios.
Table 3. 2035 Build LOS Results for Alternative Scenarios

Alternative Scenario	Intersection (AM LOS/PM LOS)			
	Cliff \& 49 ${ }^{\text {th }}$	Cliff \& I-229 NB Ramps ${ }^{1}$	Cliff \& I-229 SB Off-Ramp $/ 41^{\text {st }} 2$	Cliff \& $33^{\text {rd }}$
Cliff-1	C / B	B / B	C / C	C / C
Cliff-6	C / B	C / C	B / C	B / C
Cliff-7	C / A	C / C	C / C	B / C

${ }^{1}$ LOS reported for SPUI for the Cliff-6 and Cliff-7 scenarios.
${ }^{2}$ LOS reported for Cliff Avenue \& 41 ${ }^{\text {st }}$ Street for the Cliff-6 scenario and Cliff Avenue \& SB I-229 Off-Ramp Thru and Right Turn Lanes at $41^{\text {st }}$ Street for the Cliff-7 scenario.

For all alternative scenarios, all intersections operate at an acceptable LOS of C or better. The 2035 Build HCS 2010 Reports can be found in the APPENDIX.

ApPENDIX -
 2035 No-BuILd "Worst Case" HCS 2010 Reports

\qquad

Approach	NB	SB		b		Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	L						LR	
v (vph)	411						0	
C(m) (vph)	519							
v/c	0.79							
95\% queue length	7.38							
Control Delay	33.4							
LOS	D							
Approach Delay								
Approach LOS								

Phone:
E-Mail:

Fax:

TWO-WAY STOP CONTROL(TWSC) ANALYSIS \qquad
Analyst: GHM
Agency/Co.: HDR
Date Performed: 10/09/2014
Analysis Time Period: AM Peak
Intersection: Cliff Ave \& I-229 SB On-Ramp
Jurisdiction: Sioux Falls, SD
Units: U. S. Customary
Analysis Year: 2035
Project ID: I-229 MIS
East/West Street: I-229 SB On-Ramp
North/South Street: Cliff Ave
Intersection Orientation: NS Study period (hrs): 0.25

| | Pedestrian Volumes | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Movements | 13 | 14 | 15 | 16 |
| Flow (ped/hr) Adjustments___ | 0 | 0 | 0 | 0 |

```
Lane Width (ft)
    12.0 12.0 12.0 12.0
    4.0 4.0 4.0 4.0
llloc) 
```

\qquad
Upstream Signal Data

		Prog. Flow vph	Sat Flow vph	```Arrival Type```	Green Time sec	Cycle Length sec	Prog. Speed mph	$\begin{gathered} \text { Distance } \\ \text { to Signal } \\ \text { feet } \end{gathered}$
S 2	Left-Turn	0	1800	3	0	100	30	600
	Through	1640	1800	4	52	100	30	600
S 5	Left-Turn	0	1800	3	0	100	30	200
	Through	700	1800	4	55	100	30	200

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

| | Movement 2 | Movement 5 |
| :--- | :--- | :--- | :--- |
| Shared ln volume, major th vehicles: | | |
| Shared ln volume, major rt vehicles: | | |
| Sat flow rate, major th vehicles: | | |
| Sat flow rate, major rt vehicles: | | |
| Number of major street through lanes: | | |

Worksheet 4-Critical Gap and Follow-up Time Calculation

Critical Gap Calculation								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
t (c, base)	4.1					7.5		6.2
$t(c, h v)$	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
$\mathrm{P}(\mathrm{hv})$	2					2		2
$t(c, g)$			0.20	0.20	0.10	0.20	0.20	0.10
Percent Gradet($3,1 \mathrm{t})$			0.00	0.00	0.00	0.00	0.00	0.00
	0.00					0.70		0.00
t (C, T) : 1-stage	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2 -stage	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
$t(c) \quad 1$-stage	4.1					6.8		6.2
	4.1					5.8		6.2
Follow-Up Time Calculations								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
t (f, base)	2.20					3.50		3.30
$t(f, H V)$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
P (HV)	2					2		2
t (f)	2.2					3.5		3.3

Worksheet 5-Effect of Upstream Signals
Computation 1 -Queue Clearance Time at Upstream Signal
Movement 2 Movement 5
V(t) $V(l$, prot) $V(t) \quad V(l, p r o t)$

| V prog | 1640 | 0 | 700 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Total Saturation Flow Rate, s (vph)	3600	3600	3600	3600
Arrival Type	4	3	4	3
Effective Green, g (sec)	52	0	55	0
Cycle Length, C (sec)	100	100	100	100
Rp (from Exhibit 16-11)	1.333	1.000	1.333	1.000
Proportion vehicles arriving on green P	0.693	0.000	0.733	0.000
g (q1)	14.0	0.0	5.2	0.0
g (q2)	21.6	0.0	1.8	0.0
g (q)	35.6	0.0	7.0	0.0

Computation 2 -Proportion of TWSC	tion	me block ment 2 V(l, prot)	$V(t)^{\text {Mov }}$	$\begin{aligned} & \text { ment } 5 \\ & V(l, \text { prot }) \end{aligned}$
alpha		350		350
beta		741		741
Travel time, t(a) (sec)		. 605		535
Smoothing Factor, F		221		460
Proportion of conflicting flow, f	1.000	1.000	1.000	1.000
Max platooned flow, V(c,max)	3600	0	3552	0
Min platooned flow, V(c,min)	2000	2000	2000	2000
Duration of blocked period, t(p)	48.8	0.0	7.1	0.0
Proportion time blocked, p		488		071

Computation 3-Platoon Event Periods	Result
p(2)	0.488
p(5)	0.071
p(dom)	0.488
p(subo)	0.071
Constrained or unconstrained?	U

Proportion unblocked for minor movements,	(1)	
p(1)	Single-stage	(2)
$p(4)$	Two-Stage Process	
$p(7)$	0.929	Stage I

Computation 4 and 5								
Single-Stage Process								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
V c, x	1363					3050		682
S	3000					3000		3000
Px	0.929					0.477		0.929
V c, u, x	1237					3105		504
C r, x	559					9		566
C plat, x	519					4		526
Two-Stage Process								
			8		10			

Stage1 Stage2 Stage1 Stage2 Stage1 Stage2 Stage1 Stage2

$V(c, x)$	1234	1816
S	3000	3000
$P(x)$	0.929	0.512
$V(c, u, x)$	1098	690
$C(r, x)$	281	459
$C(p l a t, x)$	261	235

Worksheet 6-Impedance and Capacity Equations

Step 1: RT from Minor St.	9	12
Conflicting Flows		682
Potential Capacity		526
Pedestrian Impedance Factor	1.00	1.00
Movement Capacity		526
Probability of Queue free St.	1.00	1.00
Step 2: LT from Major St.	4	1
Conflicting Flows		1363
Potential Capacity		519
Pedestrian Impedance Factor	1.00	1.00
Movement Capacity		519
Probability of Queue free St.	1.00	0.21
Maj L-Shared Prob Q free St.		
Step 3: TH from Minor St.	8	11
Conflicting Flows		
Potential Capacity		
Pedestrian Impedance Factor	1.00	1.00
Cap. Adj. factor due to Impeding mvmnt	0.21	0.21
Movement Capacity		
Probability of Queue free St.	1.00	1.00
Step 4: LT from Minor St.	7	10
Conflicting Flows		3050
Potential Capacity		4
Pedestrian Impedance Factor	1.00	1.00
Maj. L, Min T Impedance factor	0.21	
Maj. L, Min T Adj. Imp Factor.	0.34	
Cap. Adj. factor due to Impeding mvmnt	0.34	0.21
Movement Capacity		1

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

Step 3: TH from Minor St.	8	11
Part 1 - First Stage		
Conflicting Flows	26	270
Potential Capacity	1.00	1.00
Pedestrian Impedance Factor	0.21	1.00
Cap. Adj. factor due to Impeding mvmnt	5	270
Movement Capacity	1.00	1.00

```
Part 2 - Second Stage
Conflicting Flows
Potential Capacity 232 26
Pedestrian Impedance Factor 1.00 1.00
Cap. Adj. factor due to Impeding mvmnt 1.00 0.21
Movement Capacity
232
5
```

Part 3 - Single Stage
Conflicting Flows
Potential Capacity
Pedestrian Impedance Factor 1.001 .00
Cap. Adj. factor due to Impeding mvmnt 0.21 0.21
Movement Capacity

Result for 2 stage process:		
a		
y	0.91	0.91
C t		
Probability of Queue free St.	1.00	1.00
Step 4: LT from Minor St.	7	10
Part 1 First Stage	21	1234
Conflicting Flows	1.00	261
Potential Capacity	0.21	1.00
Pedestrian Impedance Factor	4.00	

Part 2 - Second Stage		1816
Conflicting Flows	631	235
Potential Capacity	1.00	1.00
Pedestrian Impedance Factor	1.00	0.21
Cap. Adj. factor due to Impeding mvmnt	631	49

Part 3 - Single Stage
Conflicting Flows 3050
Potential Capacity 4
Pedestrian Impedance Factor 1.001 .00
Maj. L, Min T Impedance factor 0.21
Maj. L, Min T Adj. Imp Factor. 0.34
Cap. Adj. factor due to Impeding mvmnt 0.34 0.21
Movement Capacity 1

Results for Two-stage process:	0.91	0.91	
a			5.42
y			38

Worksheet 8-Shared Lane Calculations

Movement	7	8	9	10	11
	L	T	R	L	T
Volume (vph)			0	0	
Movement Capacity (vph)			38	526	

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

Movement		8	9			
	L	T	R	L	T	R
C sep				38		526
Volume				0		0
Delay						
Q sep						
Q sep +1						
round (Qsep +1)						
n max						
C sh						
SUM C sep						
n						
C act						

Worksheet 10-Delay, Queue Length, and Level of Service
$\left.\begin{array}{lccccccc}\hline \text { Movement } & 1 & 4 & 7 & 8 & 9 & 10 & 11 \\ \text { Lane Config } & \mathrm{L} & & & & 12 \\ \text { LR }\end{array}\right]$

Worksheet 11-Shared Major LT Impedance and Delay

	Movement 2	Movement 5
p(oj)	0.21	1.00
v(il), Volume for stream 2 or 5		
v(i2), Volume for stream 3 or 6		
s(il), Saturation flow rate for stream 2 or 5		
s(i2), Saturation flow rate for stream 3 or 6		
P* (oj)		
d(M,LT), Delay for stream 1 or 4	33.4	
N, Number of major street through lanes d(rank,1) Delay for stream 2 or 5		

\qquad

Approach	NB	SB		b		Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	L						LR	
v (vph)	225						0	
C(m) (vph)	126							
v/c	1.79							
95\% queue length	17.26							
Control Delay	443.2							
LOS	F							
Approach Delay								
Approach LOS								

Phone:
E-Mail:

Fax:

TWO-WAY STOP CONTROL(TWSC) ANALYSIS \qquad
Analyst: GHM
Agency/Co.: HDR
Date Performed: 10/09/2014
Analysis Time Period: PM Peak
Intersection: Cliff Ave \& I-229 SB On-Ramp
Jurisdiction: Sioux Falls, SD
Units: U. S. Customary
Analysis Year: 2035
Project ID: I-229 MIS
East/West Street: I-229 SB On-Ramp
North/South Street: Cliff Ave
Intersection Orientation: NS Study period (hrs): 0.25

| | Pedestrian Volumes | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Movements | 13 | 14 | 15 | 16 |
| Flow (ped/hr) Adjustments___ | 0 | 0 | 0 | 0 |

```
Lane Width (ft)
    12.0 12.0 12.0 12.0
    4.0 4.0 4.0 4.0
Nalking Speed (ft/sec) 
```

\qquad
Upstream Signal Data

		Prog. Flow vph	Sat Flow vph	Arrival Type	Green Time sec	Cycle Length sec	Prog. Speed mph	Distance to Signal feet
S 2	Left-Turn	0	1800	3	0	100	30	600
	Through	890	1800	4	54	100	30	600
S 5	Left-Turn	0	1800	3	0	100	30	200
	Through	1470	1800	4	54	100	30	200

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

| | Movement 2 | Movement 5 |
| :--- | :--- | :--- | :--- |
| Shared ln volume, major th vehicles: | | |
| Shared ln volume, major rt vehicles: | | |
| Sat flow rate, major th vehicles: | | |
| Sat flow rate, major rt vehicles: | | |
| Number of major street through lanes: | | |

Worksheet 4-Critical Gap and Follow-up Time Calculation

Critical Gap Calculation								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
t (c, base)	4.1					7.5		6.2
$t(c, h v)$	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
$\mathrm{P}(\mathrm{hv})$	3					3		3
$t(c, g)$			0.20	0.20	0.10	0.20	0.20	0.10
Percent Gradet($3,1 \mathrm{t})$			0.00	0.00	0.00	0.00	0.00	0.00
	0.00					0.70		0.00
t (C, T) : 1-stage	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2 -stage	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
$t(c) \quad 1$-stage	4.2					6.9		6.3
	4.2					5.9		6.3
Follow-Up Time Calculations								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
t (f, base)	2.20					3.50		3.30
$t(f, H V)$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
P (HV)	3					3		3
t (f)	2.2					3.5		3.3

Worksheet 5-Effect of Upstream Signals
Computation 1 -Queue Clearance Time at Upstream Signal
Movement 2 Movement 5
V(t) $V(l$, prot) $V(t) \quad V(l, p r o t)$

| V prog | 890 | 0 | 1470 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Total Saturation Flow Rate, s (vph)	3600	3600	3600	3600
Arrival Type	4	3	4	3
Effective Green, g (sec)	54	0	54	0
Cycle Length, C (sec)	100	100	100	100
Rp (from Exhibit 16-11)	1.333	1.000	1.333	1.000
Proportion vehicles arriving on green P	0.720	0.000	0.720	0.000
g (q1)	6.9	0.0	11.4	0.0
g (q2)	3.4	0.0	13.7	0.0
g (q)	10.3	0.0	25.1	0.0

Computation 2-Proportion of TWSC Intersection Time blocked Movement 2 Movement 5				
alpha		. 350		350
beta		. 741		. 741
Travel time, t(a) (sec)		. 605		535
Smoothing Factor, F		221		460
Proportion of conflicting flow, f	1.000	1.000	1.000	1.000
Max platooned flow, V(c,max)	3326	0	3600	0
Min platooned flow, V(c,min)	2000	2000	2000	2000
Duration of blocked period, t(p)	11.0	0.0	29.8	0.0
Proportion time blocked, p		. 110		298
Computation 3-Platoon Event Periods	Result			
p (2)	0.110			
p(5)	0.298			
p (dom)	0.298			
p(subo)	0.110			
Constrained or unconstrained?	U			

Proportion unblocked	(1)	(2)	(3)
for minor	Single-stage	Two-Stage	Process
movements, $\mathrm{p}(\mathrm{x})$	Process	Stage I	Stage
p (1)	0.702		
p (4)			
$\mathrm{p}(7)$			
p(8)			
p(9)			
p (10)	0.647	0.702	0.890
p (11)			
p(12)	0.702		

Computation 4 and 5								
Single-Stage Process								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
V c, X	2633					3287		1316
S	3000					3000		3000
Px	0.702					0.647		0.702
V c, u, x	2477					3444		601
C r, x	180					5		496
C plat, x	126					3		348
Two-Stage Process								
			8		10			

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St. | 8 | 11 |
| :--- | :--- | :--- | :--- |

Part 1 - First Stage
Conflicting Flows
Potential Capacity 23267
Pedestrian Impedance Factor 1.001 .00
Cap. Adj. factor due to Impeding mvmnt 0.001 .00
Movement Capacity 067
$\begin{array}{ll}\text { Probability of Queue free St. } & 1.00\end{array}$

```
Part 2 - Second Stage
Conflicting Flows
Potential Capacity 42 42
Pedestrian Impedance Factor
1.00 1.00
Cap. Adj. factor due to Impeding mvmnt
1.00
0.00
Movement Capacity
42
0
```

Part 3 - Single Stage
Conflicting Flows
Potential Capacity
Pedestrian Impedance Factor 1.001 .00
Cap. Adj. factor due to Impeding mvmnt
0.00
0.00
Movement Capacity

Result for 2 stage process:		
a		
Y	0.91	0.91
Crobability of Queue free St.	1.00	1.00
Step 4: LT from Minor St.	7	10
Part 1 - First Stage	224	2364
Conflicting Flows	1.00	55
Potential Capacity	0.00	1.00
Pedestrian Impedance Factor	0	1.00
Cap. Adj. factor due to Impeding mvmnt	55	
Movement Capacity		

Part 2 - Second Stage		923
Conflicting Flows	563	418
Potential Capacity	1.00	1.00
Pedestrian Impedance Factor	1.00	
Cap. Adj. factor due to Impeding mvmnt	563	

Part 3 - Single Stage
Conflicting Flows 3287
Potential Capacity 3
Pedestrian Impedance Factor 1.001 .00
Maj. L, Min T Impedance factor 0.00
Maj. L, Min T Adj. Imp Factor. 0.00
Cap. Adj. factor due to Impeding mvmnt 0.00 0.00
Movement Capacity
0

Results for Two-stage process:	0.91	0.91
a		
Y t		

Worksheet 8-Shared Lane Calculations

Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (vph)				0		0
Movement Capacity (vph)						348
Shared Lane Capacity (vph)						

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

Movement		8	9		11	12
	L	T	R	L	T	R
C sep						348
Volume				0		0
Delay						
Q sep						
Q sep +1						
round (Qsep +1)						
n max						
C sh						
SUM C sep						
n						
C act						

Worksheet 10-Delay, Queue Length, and Level of Service
$\left.\begin{array}{lllllll}\hline \text { Movement } & 1 & 4 & 7 & 8 & 9 & 10 \\ \text { Lane Config } & \mathrm{L} & & & 11 & 12 \\ \text { LR }\end{array}\right]$

Worksheet 11-Shared Major LT Impedance and Delay

	Movement 2	Movement 5
p(oj)	0.00	1.00
v(il), Volume for stream 2 or 5		
v(i2), Volume for stream 3 or 6		
s(il), Saturation flow rate for stream 2 or 5		
s(i2), Saturation flow rate for stream 3 or 6		
P* (oj)		
d(M,LT), Delay for stream 1 or 4	443.2	
N, Number of major street through lanes d(rank,1) Delay for stream 2 or 5		

ApPENDIX -
 2035 No-BuILd "Best Case" HCS 2010 Reports

\qquad

Approach	NB	SB		b		Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	L						LR	
v (vph)	411						0	
C(m) (vph)	519							
v/c	0.79							
95\% queue length	7.38							
Control Delay	33.4							
LOS	D							
Approach Delay								
Approach LOS								

Phone:
E-Mail:

Fax:

TWO-WAY STOP CONTROL(TWSC) ANALYSIS \qquad
Analyst: GHM
Agency/Co.: HDR
Date Performed: 10/09/2014
Analysis Time Period: AM Peak
Intersection: Cliff Ave \& I-229 SB On-Ramp
Jurisdiction: Sioux Falls, SD
Units: U. S. Customary
Analysis Year: 2035
Project ID: I-229 MIS
East/West Street: I-229 SB On-Ramp
North/South Street: Cliff Ave
Intersection Orientation: NS Study period (hrs): 0.25

| | Pedestrian Volumes | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Movements | 13 | 14 | 15 | 16 |
| Flow (ped/hr) Adjustments___ | 0 | 0 | 0 | 0 |

```
Lane Width (ft)
    12.0 12.0 12.0 12.0
    4.0 4.0 4.0 4.0
llloc) 
```

\qquad
Upstream Signal Data

		Prog. Flow vph	Sat Flow vph	```Arrival Type```	Green Time sec	Cycle Length sec	Prog. Speed mph	$\begin{gathered} \text { Distance } \\ \text { to Signal } \\ \text { feet } \end{gathered}$
S 2	Left-Turn	0	1800	3	0	100	30	600
	Through	1640	1800	4	52	100	30	600
S 5	Left-Turn	0	1800	3	0	100	30	200
	Through	700	1800	4	55	100	30	200

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

| | Movement 2 | Movement 5 |
| :--- | :--- | :--- | :--- |
| Shared ln volume, major th vehicles: | | |
| Shared ln volume, major rt vehicles: | | |
| Sat flow rate, major th vehicles: | | |
| Sat flow rate, major rt vehicles: | | |
| Number of major street through lanes: | | |

Worksheet 4-Critical Gap and Follow-up Time Calculation

Critical Gap Calculation								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
t (c, base)	4.1					7.5		6.2
$t(c, h v)$	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
$\mathrm{P}(\mathrm{hv})$	2					2		2
$t(c, g)$			0.20	0.20	0.10	0.20	0.20	0.10
Percent Gradet($3,1 \mathrm{t})$			0.00	0.00	0.00	0.00	0.00	0.00
	0.00					0.70		0.00
t (C, T) : 1-stage	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2 -stage	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
$t(c) \quad 1$-stage	4.1					6.8		6.2
	4.1					5.8		6.2
Follow-Up Time Calculations								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
t (f, base)	2.20					3.50		3.30
$t(f, H V)$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
P (HV)	2					2		2
t (f)	2.2					3.5		3.3

Worksheet 5-Effect of Upstream Signals
Computation 1 -Queue Clearance Time at Upstream Signal
Movement 2 Movement 5
V(t) $V(l$, prot) $V(t) \quad V(l, p r o t)$

| V prog | 1640 | 0 | 700 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Total Saturation Flow Rate, s (vph)	3600	3600	3600	3600
Arrival Type	4	3	4	3
Effective Green, g (sec)	52	0	55	0
Cycle Length, C (sec)	100	100	100	100
Rp (from Exhibit 16-11)	1.333	1.000	1.333	1.000
Proportion vehicles arriving on green P	0.693	0.000	0.733	0.000
g (q1)	14.0	0.0	5.2	0.0
g (q2)	21.6	0.0	1.8	0.0
g (q)	35.6	0.0	7.0	0.0

Computation 2 -Proportion of TWSC	tion	me block ment 2 V(l, prot)	$V(t)^{\text {Mov }}$	$\begin{aligned} & \text { ment } 5 \\ & V(l, \text { prot }) \end{aligned}$
alpha		350		350
beta		741		741
Travel time, t(a) (sec)		. 605		535
Smoothing Factor, F		221		460
Proportion of conflicting flow, f	1.000	1.000	1.000	1.000
Max platooned flow, V(c,max)	3600	0	3552	0
Min platooned flow, V(c,min)	2000	2000	2000	2000
Duration of blocked period, t(p)	48.8	0.0	7.1	0.0
Proportion time blocked, p		488		071

Computation 3-Platoon Event Periods	Result
p(2)	0.488
p(5)	0.071
p(dom)	0.488
p(subo)	0.071
Constrained or unconstrained?	U

Proportion unblocked for minor movements,	(1)	
p(1)	Single-stage	(2)
$p(4)$	Two-Stage Process	
$p(7)$	0.929	Stage I

Computation 4 and 5								
Single-Stage Process								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
V c, x	1363					3050		682
S	3000					3000		3000
Px	0.929					0.477		0.929
V c, u, x	1237					3105		504
C r, x	559					9		566
C plat, x	519					4		526
Two-Stage Process								
			8		10			

Stage1 Stage2 Stage1 Stage2 Stage1 Stage2 Stage1 Stage2

$V(c, x)$	1234	1816
S	3000	3000
$P(x)$	0.929	0.512
$V(c, u, x)$	1098	690
$C(r, x)$	281	459
$C(p l a t, x)$	261	235

Worksheet 6-Impedance and Capacity Equations

Step 1: RT from Minor St.	9	12
Conflicting Flows		682
Potential Capacity		526
Pedestrian Impedance Factor	1.00	1.00
Movement Capacity		526
Probability of Queue free St.	1.00	1.00
Step 2: LT from Major St.	4	1
Conflicting Flows		1363
Potential Capacity		519
Pedestrian Impedance Factor	1.00	1.00
Movement Capacity		519
Probability of Queue free St.	1.00	0.21
Maj L-Shared Prob Q free St.		
Step 3: TH from Minor St.	8	11
Conflicting Flows		
Potential Capacity		
Pedestrian Impedance Factor	1.00	1.00
Cap. Adj. factor due to Impeding mvmnt	0.21	0.21
Movement Capacity		
Probability of Queue free St.	1.00	1.00
Step 4: LT from Minor St.	7	10
Conflicting Flows		3050
Potential Capacity		4
Pedestrian Impedance Factor	1.00	1.00
Maj. L, Min T Impedance factor	0.21	
Maj. L, Min T Adj. Imp Factor.	0.34	
Cap. Adj. factor due to Impeding mvmnt	0.34	0.21
Movement Capacity		1

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

Step 3: TH from Minor St.	8	11
Part 1 - First Stage		
Conflicting Flows	26	270
Potential Capacity	1.00	1.00
Pedestrian Impedance Factor	0.21	1.00
Cap. Adj. factor due to Impeding mvmnt	5	270
Movement Capacity	1.00	1.00

```
Part 2 - Second Stage
Conflicting Flows
Potential Capacity 232 26
Pedestrian Impedance Factor 1.00 1.00
Cap. Adj. factor due to Impeding mvmnt 1.00 0.21
Movement Capacity
232
5
```

Part 3 - Single Stage
Conflicting Flows
Potential Capacity
Pedestrian Impedance Factor 1.001 .00
Cap. Adj. factor due to Impeding mvmnt 0.21 0.21
Movement Capacity

Result for 2 stage process:		
a		
y	0.91	0.91
C t		
Probability of Queue free St.	1.00	1.00
Step 4: LT from Minor St.	7	10
Part 1 First Stage	21	1234
Conflicting Flows	1.00	261
Potential Capacity	0.21	1.00
Pedestrian Impedance Factor	4.00	

Part 2 - Second Stage		1816
Conflicting Flows	631	235
Potential Capacity	1.00	1.00
Pedestrian Impedance Factor	1.00	0.21
Cap. Adj. factor due to Impeding mvmnt	631	49

Part 3 - Single Stage
Conflicting Flows 3050
Potential Capacity 4
Pedestrian Impedance Factor 1.001 .00
Maj. L, Min T Impedance factor 0.21
Maj. L, Min T Adj. Imp Factor. 0.34
Cap. Adj. factor due to Impeding mvmnt 0.34 0.21
Movement Capacity 1

Results for Two-stage process:	0.91	0.91	
a			5.42
y			38

Worksheet 8-Shared Lane Calculations

Movement	7	8	9	10	11
	L	T	R	L	T
Volume (vph)			0	0	
Movement Capacity (vph)			38	526	

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

Movement		8	9			
	L	T	R	L	T	R
C sep				38		526
Volume				0		0
Delay						
Q sep						
Q sep +1						
round (Qsep +1)						
n max						
C sh						
SUM C sep						
n						
C act						

Worksheet 10-Delay, Queue Length, and Level of Service
$\left.\begin{array}{lccccccc}\hline \text { Movement } & 1 & 4 & 7 & 8 & 9 & 10 & 11 \\ \text { Lane Config } & \mathrm{L} & & & & 12 \\ \text { LR }\end{array}\right]$

Worksheet 11-Shared Major LT Impedance and Delay

	Movement 2	Movement 5
p(oj)	0.21	1.00
v(il), Volume for stream 2 or 5		
v(i2), Volume for stream 3 or 6		
s(il), Saturation flow rate for stream 2 or 5		
s(i2), Saturation flow rate for stream 3 or 6		
P* (oj)		
d(M,LT), Delay for stream 1 or 4	33.4	
N, Number of major street through lanes d(rank,1) Delay for stream 2 or 5		

\qquad

Approach	NB	SB		b		Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	L						LR	
v (vph)	225						0	
C(m) (vph)	126							
v/c	1.79							
95\% queue length	17.26							
Control Delay	443.2							
LOS	F							
Approach Delay								
Approach LOS								

Phone:
E-Mail:

Fax:

TWO-WAY STOP CONTROL(TWSC) ANALYSIS \qquad
Analyst: GHM
Agency/Co.: HDR
Date Performed: 10/09/2014
Analysis Time Period: PM Peak
Intersection: Cliff Ave \& I-229 SB On-Ramp
Jurisdiction: Sioux Falls, SD
Units: U. S. Customary
Analysis Year: 2035
Project ID: I-229 MIS
East/West Street: I-229 SB On-Ramp
North/South Street: Cliff Ave
Intersection Orientation: NS Study period (hrs): 0.25

| | Pedestrian Volumes | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Movements | 13 | 14 | 15 | 16 |
| Flow (ped/hr) Adjustments___ | 0 | 0 | 0 | 0 |

```
Lane Width (ft)
    12.0 12.0 12.0 12.0
    4.0 4.0 4.0 4.0
Nalking Speed (ft/sec) 
```

\qquad
Upstream Signal Data

		Prog. Flow vph	Sat Flow vph	Arrival Type	Green Time sec	Cycle Length sec	Prog. Speed mph	Distance to Signal feet
S 2	Left-Turn	0	1800	3	0	100	30	600
	Through	890	1800	4	54	100	30	600
S 5	Left-Turn	0	1800	3	0	100	30	200
	Through	1470	1800	4	54	100	30	200

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

| | Movement 2 | Movement 5 |
| :--- | :--- | :--- | :--- |
| Shared ln volume, major th vehicles: | | |
| Shared ln volume, major rt vehicles: | | |
| Sat flow rate, major th vehicles: | | |
| Sat flow rate, major rt vehicles: | | |
| Number of major street through lanes: | | |

Worksheet 4-Critical Gap and Follow-up Time Calculation

Critical Gap Calculation								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
t (c, base)	4.1					7.5		6.2
$t(c, h v)$	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
$\mathrm{P}(\mathrm{hv})$	3					3		3
$t(c, g)$			0.20	0.20	0.10	0.20	0.20	0.10
Percent Gradet($3,1 \mathrm{t})$			0.00	0.00	0.00	0.00	0.00	0.00
	0.00					0.70		0.00
t (C, T) : 1-stage	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2 -stage	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
$t(c) \quad 1$-stage	4.2					6.9		6.3
	4.2					5.9		6.3
Follow-Up Time Calculations								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
t (f, base)	2.20					3.50		3.30
$t(f, H V)$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
P (HV)	3					3		3
t (f)	2.2					3.5		3.3

Worksheet 5-Effect of Upstream Signals
Computation 1 -Queue Clearance Time at Upstream Signal
Movement 2 Movement 5
V(t) $V(l$, prot) $V(t) \quad V(l, p r o t)$

| V prog | 890 | 0 | 1470 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Total Saturation Flow Rate, s (vph)	3600	3600	3600	3600
Arrival Type	4	3	4	3
Effective Green, g (sec)	54	0	54	0
Cycle Length, C (sec)	100	100	100	100
Rp (from Exhibit 16-11)	1.333	1.000	1.333	1.000
Proportion vehicles arriving on green P	0.720	0.000	0.720	0.000
g (q1)	6.9	0.0	11.4	0.0
g (q2)	3.4	0.0	13.7	0.0
g (q)	10.3	0.0	25.1	0.0

Computation 2-Proportion of TWSC Intersection Time blocked Movement 2 Movement 5				
alpha		. 350		350
beta		. 741		. 741
Travel time, t(a) (sec)		. 605		535
Smoothing Factor, F		221		460
Proportion of conflicting flow, f	1.000	1.000	1.000	1.000
Max platooned flow, V(c,max)	3326	0	3600	0
Min platooned flow, V(c,min)	2000	2000	2000	2000
Duration of blocked period, t(p)	11.0	0.0	29.8	0.0
Proportion time blocked, p		. 110		298
Computation 3-Platoon Event Periods	Result			
p (2)	0.110			
p(5)	0.298			
p (dom)	0.298			
p(subo)	0.110			
Constrained or unconstrained?	U			

Proportion unblocked	(1)	(2)	(3)
for minor	Single-stage	Two-Stage	Process
movements, $\mathrm{p}(\mathrm{x})$	Process	Stage I	Stage
p (1)	0.702		
p (4)			
$\mathrm{p}(7)$			
p(8)			
p(9)			
p (10)	0.647	0.702	0.890
p (11)			
p(12)	0.702		

Computation 4 and 5								
Single-Stage Process								
Movement	1	4	7	8	9	10	11	12
	L	L	L	T	R	L	T	R
V c, X	2633					3287		1316
S	3000					3000		3000
Px	0.702					0.647		0.702
V c, u, x	2477					3444		601
C r, x	180					5		496
C plat, x	126					3		348
Two-Stage Process								
			8		10			

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St. | 8 | 11 |
| :--- | :--- | :--- | :--- |

Part 1 - First Stage
Conflicting Flows
Potential Capacity 23267
Pedestrian Impedance Factor 1.001 .00
Cap. Adj. factor due to Impeding mvmnt 0.001 .00
Movement Capacity 067
$\begin{array}{ll}\text { Probability of Queue free St. } & 1.00\end{array}$

```
Part 2 - Second Stage
Conflicting Flows
Potential Capacity 42 42
Pedestrian Impedance Factor
1.00 1.00
Cap. Adj. factor due to Impeding mvmnt
1.00
0.00
Movement Capacity
42
0
```

Part 3 - Single Stage
Conflicting Flows
Potential Capacity
Pedestrian Impedance Factor 1.001 .00
Cap. Adj. factor due to Impeding mvmnt
0.00
0.00
Movement Capacity

Result for 2 stage process:		
a		
Y	0.91	0.91
Crobability of Queue free St.	1.00	1.00
Step 4: LT from Minor St.	7	10
Part 1 - First Stage	224	2364
Conflicting Flows	1.00	55
Potential Capacity	0.00	1.00
Pedestrian Impedance Factor	0	1.00
Cap. Adj. factor due to Impeding mvmnt	55	
Movement Capacity		

Part 2 - Second Stage		923
Conflicting Flows	563	418
Potential Capacity	1.00	1.00
Pedestrian Impedance Factor	1.00	
Cap. Adj. factor due to Impeding mvmnt	563	

Part 3 - Single Stage
Conflicting Flows 3287
Potential Capacity 3
Pedestrian Impedance Factor 1.001 .00
Maj. L, Min T Impedance factor 0.00
Maj. L, Min T Adj. Imp Factor. 0.00
Cap. Adj. factor due to Impeding mvmnt 0.00 0.00
Movement Capacity
0

Results for Two-stage process:	0.91	0.91
a		
Y t		

Worksheet 8-Shared Lane Calculations

Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (vph)				0		0
Movement Capacity (vph)						348
Shared Lane Capacity (vph)						

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

Movement		8	9		11	12
	L	T	R	L	T	R
C sep						348
Volume				0		0
Delay						
Q sep						
Q sep +1						
round (Qsep +1)						
n max						
C sh						
SUM C sep						
n						
C act						

Worksheet 10-Delay, Queue Length, and Level of Service
$\left.\begin{array}{lllllll}\hline \text { Movement } & 1 & 4 & 7 & 8 & 9 & 10 \\ \text { Lane Config } & \mathrm{L} & & & 11 & 12 \\ \text { LR }\end{array}\right]$

Worksheet 11-Shared Major LT Impedance and Delay

	Movement 2	Movement 5
p(oj)	0.00	1.00
v(il), Volume for stream 2 or 5		
v(i2), Volume for stream 3 or 6		
s(il), Saturation flow rate for stream 2 or 5		
s(i2), Saturation flow rate for stream 3 or 6		
P* (oj)		
d(M,LT), Delay for stream 1 or 4	443.2	
N, Number of major street through lanes d(rank,1) Delay for stream 2 or 5		

ApPENDIX -
 2035 No-BuILd Freeway HCS 2010 Reports

FREEWAY WEAVING WORKSHEET				
General Information			Site Information	
Analyst Agency/Company Date Performed Analysis Time Period	GHM HDR 11/3/2014 AM Peak		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-229 Northbound Minnesota Ave to Cliff Ave 2035 No Build
Project Description I-229 MIS				
Inputs				
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS		$\begin{array}{r} \text { One-Sided } \\ 3 \\ 3130 \mathrm{ft} \\ 70 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type	$\begin{array}{r}\text { Freeway } \\ 15 \\ 2400 \\ \text { Level } \\ \hline\end{array}$

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$V_{\text {FF }}$	1989	0.85	6	0	1.5	1.2	0.971	1.00	2410
$\mathrm{V}_{\text {RF }}$	411	0.85	3	0	1.5	1.2	0.985	1.00	491
$\mathrm{V}_{\text {FR }}$	491	0.85	3	0	1.5	1.2	0.985	1.00	586
$\mathrm{V}_{\text {RR }}$	79	0.85	3	0	1.5	1.2	0.985	1.00	94
V_{NW}	2504							$V=$	3477
$\mathrm{v}_{\text {w }}$	1077								
VR	0.301								

Configuration Characteristics

Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$	2 lc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$	$1077 \mathrm{lc/h}$
Interchange density, ID	$1.0 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	$1402 \mathrm{lc/h}$
Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$	$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$	$1634 \mathrm{lc/h}$
Minimum FR lane changes, $\mathrm{LC}_{\text {FR }}$	$1 \mathrm{lc/pc}$	Total lane changes, $\mathrm{LC}_{\text {ALL }}$	$3036 \mathrm{lc/h}$
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	Ic/pc	Non-weaving vehicle index, I_{NW}	84
Weaving Segment Speed, Density, Level of Service, and Capacity			
aving segment flow rate, v	3477 veh/h	Weaving intensity factor, W	0.221
Weaving segment capacity, C_{w}	6443 veh/h	Weaving segment speed, S	57.5 mph
Weaving segment v/c ratio	0.540	Average weaving speed, S_{w}	60.1 mph
Weaving segment density, D	$20.7 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	Average non-weaving speed, S_{NW}	56.5 mph
Level of Service, LOS	C	Maximum weaving length, $L_{\text {MAX }}$	5592 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

FREEWAY WEAVING WORKSHEET				
General Information			Site Information	
Analyst Agency/Company Date Performed Analysis Time Period	GHM HDR 11/3/2014 PM Peak		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-229 Northbound Minnesota Ave to Cliff Ave 2035 No Build
Project Description I-229 MIS				
Inputs				
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS		$\begin{array}{r} \text { One-Sided } \\ 3 \\ 3130 \mathrm{ft} \\ 70 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type	$\begin{array}{r}\text { Freeway } \\ 15 \\ 2400 \\ \text { Level } \\ \hline\end{array}$

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
V_{FF}	2504	0.93	6	0	1.5	1.2	0.971	1.00	2773
$\mathrm{V}_{\text {RF }}$	486	0.93	3	0	1.5	1.2	0.985	1.00	530
$\mathrm{V}_{\text {FR }}$	526	0.93	3	0	1.5	1.2	0.985	1.00	574
$\mathrm{V}_{\text {RR }}$	24	0.93	3	0	1.5	1.2	0.985	1.00	26
V_{NW}	2799							$V=$	3790
$\mathrm{v}_{\text {w }}$	1104								
VR	0.283								

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	$21 c$	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$	$1104 \mathrm{lc/h}$
Interchange density, ID	$1.0 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	$1429 \mathrm{lc} / \mathrm{h}$
Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$	$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$	$1695 \mathrm{lc} / \mathrm{h}$
Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$	$1 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\text {ALL }}$	$3124 \mathrm{lc/h}$
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	lc/pc	Non-weaving vehicle index, I_{NW}	876
Weaving Segment Speed, Density, Level of Service, and Capacity			
aving segment flow rate, v	3790 veh/h	Weaving intensity factor, W	0.226
Weaving segment capacity, c_{w}	6483 veh/h	Weaving segment speed, S	56.9 mph
Weaving segment v/c ratio	0.585	Average weaving speed, S_{w}	59.9 mph
Weaving segment density, D	$22.9 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	Average non-weaving speed, S_{NW}	55.8 mph
Level of Service, LOS	C	Maximum weaving length, $L_{\text {MAX }}$	5401 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

FREEWAY WEAVING WORKSHEET					
General Information			Site Information		
Analyst Agency/Company Date Performed Analysis Time Period	GHM HDR 11/3/2014 AM Peak		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-229 Northbound Cliff Ave to 26th St 2035 No Build	
Project Description I-229 MIS					
Inputs					
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS		$\begin{array}{r} \text { One-Sided } \\ 3 \\ 2750 \mathrm{ft} \\ 69 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type		$\begin{array}{r}\text { Freeway } \\ 15 \\ 2400 \\ \text { Level } \\ \hline\end{array}$

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$\mathrm{V}_{\text {FF }}$	1870	0.85	8	0	1.5	1.2	0.962	1.00	2288
$\mathrm{V}_{\text {RF }}$	510	0.85	3	0	1.5	1.2	0.985	1.00	609
$\mathrm{V}_{\text {FR }}$	530	0.85	3	0	1.5	1.2	0.985	1.00	633
V_{RR}	10	0.85	3	0	1.5	1.2	0.985	1.00	12
V_{NW}	2300							$\mathrm{V}=$	3406
V_{w}	1242								
VR	0.351								

Configuration Characteristics

Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$	2 lc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$	$1242 \mathrm{lc/h}$
Interchange density, ID	$1.0 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	$1544 \mathrm{lc/h}$
Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$	$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{NW}}$	$1387 \mathrm{lc} / \mathrm{h}$
Minimum FR lane changes, $\mathrm{LC}_{\text {FR }}$	$1 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\text {aLL }}$	2931 lc/h
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	lc/pc	Non-weaving vehicle index, $I_{\text {Nw }}$	633
Weaving Segment Speed, Density, Level of Service, and Capacity			
Weaving segment flow rate, v	3406 veh/h	Weaving intensity factor, W	0.238
Weaving segment capacity, c_{w}	6176 veh/h	Weaving segment speed, S	55.8 mph
Weaving segment v/c ratio	0.551	Average weaving speed, S_{w}	58.6 mph
Weaving segment density, D	$21.2 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	Average non-weaving speed, S_{NW}	54.4 mph
Level of Service, LOS	C	Maximum weaving length, $L_{\text {MAX }}$	6134 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

FREEWAY WEAVING WORKSHEET					
General Information			Site Information		
Analyst Agency/Company Date Performed Analysis Time Period	GHM HDR 11/3/2014 PM Peak		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-229 Northbound Cliff Ave to 26th St 2035 No Build	
Project Description I-229 MIS					
Inputs					
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS		$\begin{array}{r} \text { One-Sided } \\ 3 \\ 2750 \mathrm{ft} \\ 69 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type		$\begin{array}{r}\text { Freeway } \\ 15 \\ 2400 \\ \text { Level } \\ \hline\end{array}$

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	$\mathrm{E}_{\text {R }}$	f_{HV}	fp_{p}	v (pc/h)
$\mathrm{V}_{\text {FF }}$	2200	0.93	8	0	1.5	1.2	0.962	1.00	2460
$\mathrm{V}_{\text {RF }}$	410	0.93	3	0	1.5	1.2	0.985	1.00	447
$\mathrm{V}_{\text {FR }}$	790	0.93	3	0	1.5	1.2	0.985	1.00	862
$\mathrm{V}_{\text {RR }}$	10	0.93	3	0	1.5	1.2	0.985	1.00	11
V_{NW}	2471							V =	3635
V_{w}	1309								
VR	0.346								

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	21 c	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$	$1309 \mathrm{lc} / \mathrm{h}$
Interchange density, ID	$1.0 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	$1611 \mathrm{lc} / \mathrm{h}$
Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$	$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{NW}}$	$1422 \mathrm{lc} / \mathrm{h}$
Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$	$1 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\text {ALL }}$	$3033 \mathrm{lc} / \mathrm{h}$
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	lc/pc	Non-weaving vehicle index, $I_{\text {Nw }}$	680
Weaving Segment Speed, Density, Level of Service, and Capacity			
Weaving segment flow rate, v	3635 veh/h	Weaving intensity factor, W	0.244
Weaving segment capacity, c_{w}	6188 veh/h	Weaving segment speed, S	55.1 mph
Weaving segment v/c ratio	0.587	Average weaving speed, S_{w}	58.4 mph
Weaving segment density, D	$22.9 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	Average non-weaving speed, S_{Nw}	53.5 mph
Level of Service, LOS	C	Maximum weaving length, $L_{\text {MAX }}$	6086 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

FREEWAY WEAVING WORKSHEET					
General Information			Site Information		
Analyst Agency/Company Date Performed Analysis Time Period	GHM HDR 11/3/2014 AM Peak		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-229 Southbound 26th St to Cliff Ave 2035 No Build	
Project Description I-229 MIS					
Inputs					
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS		$\begin{array}{r} \text { One-Sided } \\ 3 \\ 2670 \mathrm{ft} \\ 69 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type		$\begin{array}{r}\text { Freeway } \\ 15 \\ 2400 \\ \text { Level } \\ \hline\end{array}$

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$\mathrm{VFF}_{\text {F }}$	1900	0.85	8	0	1.5	1.2	0.962	1.00	2325
$\mathrm{V}_{\text {RF }}$	780	0.85	3	0	1.5	1.2	0.985	1.00	931
$\mathrm{V}_{\text {FR }}$	420	0.85	3	0	1.5	1.2	0.985	1.00	502
$V_{\text {RR }}$	10	0.85	3	0	1.5	1.2	0.985	1.00	12
V_{NW}	2337							V =	3625
$\mathrm{v}_{\text {w }}$	1433								
VR	0.380								

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	$21 c$	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$	$1433 \mathrm{lc} / \mathrm{h}$
Interchange density, ID	$1.0 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	1731 lc/h
Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$	$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$	1351 lc/h
Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$	$1 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\text {ALL }}$	$3082 \mathrm{lc/h}$
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	lc/pc	Non-weaving vehicle index, I_{NW}	624
Weaving Segment Speed, Density, Level of Service, and Capacity			
aving segment flow rate, v	3625 veh/h	Weaving intensity factor, W	0.253
Weaving segment capacity, c_{w}	6071 veh/h	Weaving segment speed, S	54.6 mph
Weaving segment v/c ratio	0.597	Average weaving speed, S_{w}	58.1 mph
Weaving segment density, D	$23.0 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	Average non-weaving speed, S_{Nw}	52.7 mph
Level of Service, LOS	C	Maximum weaving length, $L_{\text {MAX }}$	6459 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

FREEWAY WEAVING WORKSHEET					
General Information			Site Information		
Analyst Agency/Company Date Performed Analysis Time Period	GHM HDR 11/3/2014 PM Peak		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-229 Southbound 26th St to Cliff Ave 2035 No Build	
Project Description I-229 MIS					
Inputs					
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS		$\begin{array}{r} \text { One-Sided } \\ 3 \\ 2670 \mathrm{ft} \\ 69 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type		$\begin{array}{r}\text { Freeway } \\ 15 \\ 2400 \\ \text { Level } \\ \hline\end{array}$

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	fp_{p}	v (pc/h)
V_{FF}	2250	0.93	8	0	1.5	1.2	0.962	1.00	2516
$\mathrm{V}_{\text {RF }}$	610	0.93	3	0	1.5	1.2	0.985	1.00	666
$\mathrm{V}_{\text {FR }}$	410	0.93	3	0	1.5	1.2	0.985	1.00	447
$\mathrm{V}_{\text {RR }}$	10	0.93	3	0	1.5	1.2	0.985	1.00	11
V_{NW}	2527							$V=$	3500
$\mathrm{v}_{\text {w }}$	1113								
VR	0.306								

Configuration Characteristics

Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$	$21 c$	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$	$1113 \mathrm{lc} / \mathrm{h}$
Interchange density, ID	$1.0 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, $L_{\text {w }}$	$411 \mathrm{lc/h}$
Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$	$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$	$1390 \mathrm{lc} / \mathrm{h}$
Minimum FR lane changes, $\mathrm{LC}_{\text {FR }}$	$1 \mathrm{lc/pc}$	Total lane changes, $\mathrm{LC}_{\text {ALL }}$	2801 lc/h
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	$\mathrm{lc} / \mathrm{pc}$	Non-weaving vehicle index, I_{NW}	675
Weaving Segment Speed, Density, Level of Service, and Capacity			
Weaving segment flow rate, v	3500 veh/h	Weaving intensity factor, W	0.235
Weaving segment capacity, c_{w}	6265 veh/h	Weaving segment speed, S	56.2 mph
Weaving segment v/c ratio	0.559	Average weaving speed, S_{w}	58.7 mph
Weaving segment density, D	$21.6 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	Average non-weaving speed, S_{Nw}	55.2 mph
Level of Service, LOS	C	Maximum weaving length, $L_{\text {MAX }}$	5646 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

FREEWAY WEAVING WORKSHEET				
General Information			Site Information	
Analyst Agency/Company Date Performed Analysis Time Period	GHM HDR 11/3/2014 AM Peak		Freeway/Dir of Travel Weaving Segment Location Analysis Year	I-229 Southbound Cliff Ave to Minnesota Ave 2035 No Build
Project Description I-229 MIS				
Inputs				
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS		$\begin{array}{r} \text { One-Sided } \\ 3 \\ 3120 \mathrm{ft} \\ 67 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type	$\begin{array}{r}\text { Freeway } \\ 15 \\ 2350 \\ \text { Level } \\ \hline\end{array}$

Conversions to pc/h Under Base Conditions

	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$\mathrm{VFF}_{\text {F }}$	2325	0.85	6	0	1.5	1.2	0.971	1.00	2817
$\mathrm{V}_{\text {RF }}$	455	0.85	3	0	1.5	1.2	0.985	1.00	543
F_{FR}	355	0.85	3	0	1.5	1.2	0.985	1.00	424
V_{RR}	115	0.85	3	0	1.5	1.2	0.985	1.00	137
V_{NW}	2954							V =	3807
N_{w}	967								
VR	0.247								

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	$21 c$	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$	$967 \mathrm{lc/h}$
Interchange density, ID	$1.0 \mathrm{int} / \mathrm{mi}$	Weaving lane changes, LC_{w}	$1292 \mathrm{lc/h}$
Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$	$1 \mathrm{lc} / \mathrm{pc}$	Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$	$1722 \mathrm{lc/h}$
Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$	$1 \mathrm{lc} / \mathrm{pc}$	Total lane changes, $\mathrm{LC}_{\text {ALL }}$	$3014 \mathrm{lc/h}$
Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$	lc/pc	Non-weaving vehicle index, I_{NW}	922
Weaving Segment Speed, Density, Level of Service, and Capacity			
aving segment flow rate, v	3807 veh/h	Weaving intensity factor, W	0.220
Weaving segment capacity, c_{w}	6422 veh/h	Weaving segment speed, S	54.7 mph
Weaving segment v/c ratio	0.593	Average weaving speed, S_{w}	57.6 mph
Weaving segment density, D	$23.9 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	Average non-weaving speed, S_{NW}	53.8 mph
Level of Service, LOS	C	Maximum weaving length, $L_{\text {MAX }}$	5018 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		GHM HDR 11/3/2014 PM Peak			Freeway/Dir of Travel Weaving Segment Location Analysis Year			1-229 Southbound Cliff Ave to Minnesota Ave 2035 No Build	
Project Description I-229 MIS									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				One-Sided 3 3120 ft 67 mph	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				Freeway 15 2350 Level
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	$\mathrm{fp}^{\text {f }}$	v (pc/h)
$\mathrm{V}_{\text {FF }}$	2414	0.93	6	0	1.5	1.2	0.971	1.00	2674
$\mathrm{V}_{\text {RF }}$	676	0.93	3	0	1.5	1.2	0.985	1.00	738
$\mathrm{V}_{\text {FR }}$	446	0.93	3	0	1.5	1.2	0.985	1.00	487
V_{RR}	34	0.93	3	0	1.5	1.2	0.985	1.00	37
V_{NW}	2711							$\mathrm{V}=$	3822
$\mathrm{V}_{\text {w }}$	1225								
VR	0.311								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				2 lc $1.0 \mathrm{int} / \mathrm{mi}$ $1 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$ Weaving lane changes, LC_{w} Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, $I_{N W}$				$1225 \mathrm{lc} / \mathrm{h}$ $1550 \mathrm{lc} / \mathrm{h}$ 1672 lc/h $3222 \mathrm{lc} / \mathrm{h}$ 846
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v / c ratio Weaving segment density, D Level of Service, LOS				3822 veh/h 6268 veh/h 0.610 $.6 \mathrm{pc} / \mathrm{mi} / \mathrm{n}$ C	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $\mathrm{L}_{\text {MAX }}$				$\begin{array}{r} \hline 0.232 \\ 53.4 \mathrm{mph} \\ 57.2 \mathrm{mph} \\ 51.9 \mathrm{mph} \\ 5705 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
opyright © 2013 University of Florida, All Rights Reserved HCS									

APPENDIX -

Year 2035 Build HCS 2010 Reports

Appendix D1Preliminary Concept Figures

Appendix D2. Preliminary Concepts Tech Memo

Preliminary Concepts - Cliff Avenue Corridor and Interchanges

The Cliff Avenue Corridor portion of the Preliminary Concept Matrix was developed following the April 2016 Concept Web Meeting to document Study Advisory Team (SAT) decisions and serves as a road map for the development of concepts identified during the meeting. A comments column has been added to allow notes regarding evolution of the concepts from the meeting to be explained. The Preliminary Concept Matrix is shown in table 1.

The concepts depicted in Appendix D1- Preliminary Concept Figures following this memorandum have had one or the other of the following actions determined by the SAT, as documented in the Concept Matrix:

- Develop comparative data for preliminary concept screening
- Eliminate from further development due to anticipated impacts, but will be shown at the second public meeting to note that the concept was identified and received initial consideration.

Table 1. Preliminary Concept Matrix

	```Type SPUI = Single Point TD = Tight Diamond DDI = Diverging Diamond Par = Parclo TSD = Tight Split Diamond FD = Folded Diamond \(\mathrm{CFI}=\) Continuous Flow Intersection```	Concept Workshop Decision   Develop = Develop for public meeting   Show = Show public / No further development   Eliminate = Do not show public / No further development			
Concept ID	Type / Details Description	Web   Meeting   Decision	Develop   Traffic   Assessment	ment Items   ROW/Environ /Cost	Comments
Cliff Avenue Interchange					
Cliff-1	NB Cliff to SB I-229 Loop Ramp Auxiliary Lane Add	Develop	X	X	
Cliff-2	NB/SB Cliff to SB l-229 Loop Ramp, Eliminate SB Diagonal Ramp	Develop	X	X	
Cliff-3	NB/SB Cliff to SB 1-229 Loop Ramp, Relocate 41st South	Eliminate (1)			
Cliff-4	Diamond Interchange - 41st Street Realigned to High School	Develop	X	X	
Cliff-5	Diamond Interchange - 41st Street Realigned to Pam Road	Eliminate			
Cliff-6	SPUI Interchange - 41st Street Realigned to Pam Road	Develop	X	X	
Cliff-7	SPUI Interchange - SB I-229 Off Ramp Thru \& Right Turn Lanes at 41st Street Intersection	Develop	X	X	Renamed From SPUI Interchange - WBTMWR on Existing Ramp
Cliff-8	Tight Diamond Interchange - 41st Street Realigned to High School	Develop	X	X	Renamed From Tight Diamond Interchange - 41st Street Realigned to Pam Road
Footnotes   (1) Concept will not be developed further based on Synchro traffic analysis.					

## Preliminary Concepts - Development

The preliminary concepts shown in Table 1 were developed in response to traffic operational needs. Traffic analyses were conducted for all concepts in HCS 2010 to verify that the concepts provided the required standard of traffic operations of level of service (LOS) ' $C$ ' set for this study. Concept Cliff-3 met the LOS standard based on the HCS 2010 analysis, but the analysis results were affected by a limitation in the software related to closely-spaced traffic signals operating under a single traffic controller. To verify the HCS 2010 results, Synchro software was used as a tool capable of analyzing traffic operations under complex traffic signal phasing conditions. The Synchro analysis showed excessive queuing related to the close spacing of intersections in concept Cliff-3. Cliff-3 was therefore eliminated from further consideration due to potential for traffic and safety concerns.

Another situation that arose during the preliminary concept development stage was the potential impact of the concept limits on Lincoln High School. Traffic counts were conducted for pedestrian and vehicle traffic at all major driveways on a typical school day to assess the level of high school traffic and school traffic patterns. A high level review of the driveway volumes identified a potential future need within the study horizon for a traffic signal at the Cliff Avenue / E. $38^{\text {th }}$ Street / Lincoln High School driveway intersection; no formal traffic analysis was conducted at this location. Implementation of a traffic signal at this location would require a traffic study to verify that the signal is warranted based on the requirements set in the Manual on Uniform Traffic Control Devices (MUTCD). This location should be monitored to determine the appropriate timing of conducting a future traffic volume study.

If a traffic signal is warranted and constructed, the pedestrian signal on Cliff Avenue just north of E. $38^{\text {th }}$ Street would need to be removed and pedestrians would use the new traffic signal to cross Cliff Avenue. A potential signal at E. $38^{\text {th }}$ Street / LHS driveway could create a tight traffic signal spacing depending on which Cliff Avenue concept is preferred. No preliminary concepts were eliminated based on the potential for tight signal spacing, but it is recommended that, if developed, the future traffic signal at E. $38^{\text {th }}$ Street / LHS driveway be coordinated with the traffic signals proposed in the Cliff Avenue concepts.

Traffic operation analysis of the school's driveways was limited to the southernmost driveway with direct access to Cliff Avenue based on the potential change in access for this driveway between concepts. The preliminary Cliff Avenue concepts range from providing right-in / rightout only access to aligning $41^{\text {st }}$ Street with the driveway at a proposed traffic signal. Traffic operations for the southernmost driveway show acceptable LOS for either the right-in / right-out or signalized conditions. Impacts of the driveway traffic operations were included in the section entitled Traffic Operations Assessment.

## Preliminary Concepts Comparative Data

The I-229 Major Investment Study scope identified the following four types of data to be developed for each preliminary concept identified for further consideration:

- Property Impacts
- Traffic Operations
- Environmental Review
- Construction and Property Impact Costs

This comparative data will be used in combination with public input to screen the concepts and identify "Build Scenarios" for further refinement. The remainder of this memorandum will describe the approach applied to preparing the comparative data and will document the comparative data for each concept.

## Property Impacts

An approximate footprint for each preliminary concept was developed by setting impact limits based on the following criteria:

- 15 feet behind the back of curb
- 25 -foot offset from ramp pavement (from back of curb or edge of shoulder)
- 100 feet from edge of I-229 shoulder pavement
- 5 feet behind retaining walls

The criteria that resulted in the greatest offset from a given roadway set the impact limit for that roadway.

The portion of each property parcel intersected by the impact limits that was inside of the impact limit was assumed to be an acquisition. If an acquisition impacted a structure, or rendered a parcel unusable in the opinion of the consultant (i.e. a large part of a parking lot was acquired), the entire structure or parcel was assumed to be an acquisition.

A unit price of $\$ 5$ per square foot of acquisition area was applied to estimate the cost of property impacts. The total estimated cost of property impacts for a concept is the total impacted area times $\$ 5$ per square foot plus the assessed value of structures impacted (from the Minnehaha County Assessor's website) times 1.5 (to estimate the fair market value of impacts).

The estimated property impact areas (in acres) and costs are included in the tabulation of estimated construction costs later in this memorandum.

## Traffic Operations Assessment

The traffic operations assessment for each preliminary concept was developed using output from Highway Capacity Software 2010 (HCS 2010) similarly to Sub-Study 5, which differs from the DTA model-based Measures of Effectiveness (MOEs) for Sub-Studies 1-4. The HCS 2010 output provides MOEs that address three key performance indicators used in Sub-Studies 1-4: Queues, Delay, and Travel Times. The MOEs used to address these key performance indicators are listed below, and are generally consistent with the MOEs previously derived from the DTA model. Any noteworthy differences between Sub-Studies 1-4 and Sub-Study 6 are included as sub-bullets in the following list.

- Total queues in the interchange area
- The definition of interchange area for Sub-Study 6 is only inclusive of the Cliff Avenue ramp terminals, which is smaller than the previous DTA interchange areas.
- Delay in the interchange area
- The definition of interchange area for Sub-Study 6 is only inclusive of the Cliff Avenue ramp terminals, which is smaller than the previous DTA interchange areas.
- Delay in the subarea
- The definition of subarea for Sub-Study 6 is only inclusive of Cliff Avenue between $49^{\text {th }}$ Street to $33^{\text {rd }}$ Street, which is much smaller than the previous DTA subareas.
- Travel times for select Origin-Destination pairs
- The only travel times studied for Sub-Study 6 were for through trips on Cliff Avenue from $49^{\text {th }}$ Street to $33^{\text {rd }}$ Street.
- Queue-to-ramp-length ratio
- This measure was introduced as an improvement to Sub-Studies 1-4, which used Travel Time on I-229 to discover excessive ramp queuing.

For each concept, the MOEs were pulled for both AM and PM peaks and then averaged. The averaged MOEs from each concept were compared to the No-Build MOEs and a percent change calculated between each concept and No-Build. A subjective classification was then applied to each concept based on the areas of Queues, Delay, and Travel Time. The subjective classifications are Very Good, Good, Neutral, and Poor. Sub-Study 6 comparative traffic operations evaluations are shown on the following pages.

## Queues



## Delay

Interchang Concept ID	e Area Delay (veh-min) Description	Delay, veh-min AM \& PM	Subjective Classification
Cliff-1	NB Cliff to SB I-229 Loop Ramp Auxiliary Lane Add	-19\%	Good
Cliff-2	NB/SB Cliff to SBI-229 Loop Ramp, Eliminate SB Diagonal Ramp	-7\%	Neutral
Cliff-4	Diamond Interchange - 41st Street Realigned to High School	-48\%	Very Good
Cliff-6	SPUI Interchange - 41st Street Realigned to Pam Road	-48\%	Very Good
Cliff-7	SPUI Interchange - SB I-229 Off Ramp Thru \& Right Turn Lanes at 41st Street Intersection	-21\%	Good
Cliff-8	Tight Diamond Interchange - 41st Street Realigned to High School	-58\%	Very Good
Overall Subarea Delay (min)		Delay, min	Subjective
Concept ID Description		AM \& PM	Classification
Cliff-1	NB Cliff to SB I-229 Loop Ramp Auxiliary Lane Add	-24\%	Good
Cliff-2	NB/SB Cliff to SB I-229 Loop Ramp, Eliminate SB Diagonal Ramp	-15\%	Good
Cliff-4	Diamond Interchange - 41st Street Realigned to High School	-17\%	Good
Cliff-6	SPUI Interchange - 41st Street Realigned to Pam Road	-22\%	Good
Cliff-7	SPUI Interchange - SBI-229 Off Ramp Thru \& Right Turn Lanes at 41st Street Intersection	-27\%	Good
Cliff-8	Tight Diamond Interchange - 41st Street Realigned to High School	-22\%	Good

## Travel Time

Travel Tim Concept ID	e- Cliff Avenue Corridor Description	Travel Time AM \& PM	Subjective Classification
Cliff-1	NB Cliff to SB 1-229 Loop Ramp Auxiliary Lane Add	4\%	Neutral
Cliff-2	NB/SB Cliff to SB1-229 Loop Ramp, Eliminate SB Diagonal Ramp	15\%	Neutral
Cliff-4	Diamond Interchange - 41st Street Realigned to High School	11\%	Neutral
Cliff-6	SPUI Interchange - 41st Street Realigned to Pam Road	7\%	Neutral
Cliff-7	SPUI Interchange - SB I-229 Off Ramp Thru \& Right Tum Lanes at 41st Street Intersection	4\%	Neutral
Cliff-8	Tight Diamond Interchange - 41st Street Realigned to High School	8\%	Neutral

As evident from the preceding tables, all interchange options compare similarly to the No-Build condition when looking at the queue-to-ramp-length ratio, overall subarea delay, and travel time. Of these three, the travel time along Cliff Avenue is the only metric where the Build concepts do not show considerable improvement over the No-Build condition. The increase in corridor travel time apparent in all concepts is strongly influenced by additional stopped time for northbound and southbound through travelers to more adequately address traffic turning onto and off of $\mathrm{I}-229$ and $41^{\text {st }}$ Street. Though through travelers will experience more travel time, other trips that only use portions of the corridor should experience shorter travel times based on the major reductions in vehicle delay, though these perceived shorter travel times are not reflected in the performance metric.

Conversely, the interchange area total queue length and interchange area delay show more operational differences in the concepts. Looking at the interchange queue lengths, there are some concepts that show poor benefits, which means that the interchange ramp terminals will have longer queues than in the No-Build scenario. However, all of the Build concepts have interchange queue storage ratios less than one, which is not the case for the No-Build scenario. Therefore, the Build concepts represent a safety and operational benefit over the No-Build even though the metric of queue length does not show favorably for certain Build concepts.

Overall, the interchange area delay proves to be the best metric for assessing the operational benefits of the concepts. Using the interchange area delay as a guide, the following overall subjective classifications are recommended.

## Overall

Overall Subjective Classification   Concept ID		Subjective   Classification
Cliff-1	NB Cliff to SB I-229 Loop Ramp Auxiliary Lane Add	Good
Cliff-2	NB/SB Cliff to SB I-229 Loop Ramp, Eliminate SB Diagonal Ramp	Neutral
Cliff-4	Diamond Interchange - 41st Street Realigned to High School	Very Good
Cliff-6	SPUI Interchange - 41st Street Realigned to Pam Road	Very Good
Cliff-7	SPUI Interchange - SB I-229 Off Ramp Thru \& Right Turn Lanes at   41st Street Intersection	Good
Cliff-8	Tight Diamond Interchange - 41st Street Realigned to High School	Very Good

## Environmental Review

To analyze potential resources within the Study Area, a desktop review of available data was analyzed against the project concepts, in addition to review of aerial imagery of the I-229 corridor. Items that could require further analysis at the time of future project initiation were identified for issues which separate project concepts. Later phases in potential project corridor planning will require environmental documentation if federal funds are used, and would require analysis of additional resources such as environmental justice, noise, etc.

## Archaeological and Historical Resources

## APPROACH

A record search was completed by the SD Archaeological Research Center. The area which encompasses a particular preliminary roadway concept was reviewed for potential historic and cultural resources. Historic and cultural resources are regulated under Section 106 of the National Historic Preservation Act, and may require consultation with the South Dakota Department of Transportation (SDDOT) and the South Dakota State Historic Preservation Office (SHPO).

The record search identified record sites and cultural surveys that were completed within the study area. Known sites that were listed as eligible for the National Register of Historic Places (NRHP) include three bridges and two railroad beds. Additionally, one unevaluated Native American stone circle is located within the study area. Shapefiles of these sites were imported into ArcGIS and compared against preliminary concepts to determine the potential for impacts to cultural resources. The known sites are not located within the area potentially affected by Sub-Study 6.

## LIMITATIONS

Early in project planning, the City of Sioux Falls (City) should work with SDDOT to coordinate its intent to proceed with a particular roadway improvement project, and request that the SDDOT advise the City on the applicability of Section 106, the need to identify consulting parties, and for a Class I cultural resource literature search. When appropriate, the City should anticipate that a Class III identification effort will be conducted, including identification of archaeological, architectural, and traditional cultural properties subject to the effects of the project. When historic properties are identified, the City should anticipate that avoidance or mitigation of adverse effects to such properties may be required.

Wetlands and Waters of the U.S.
APPROACH
The National Wetlands Inventory (NWI) and aerial imagery were reviewed within the study area to determine potential project impacts. The Big Sioux River and its tributaries are located within the study area and cross the I-229 corridor three times. There are also several wetlands located adjacent to the I-229 corridor. Because the NWI provides an estimate of wetlands based on soil type and aerial photography, these boundaries are utilized as guidance for identifying wetland areas and delineation would be required for each project.

Wetlands and other waters of the US will need to be considered for each project as the State and City want to move the project from planning stages to construction. Early in project planning, an onsite wetland delineation of the study area is recommended to confirm the boundaries of wetlands and other waters of the U.S. within the study area and to coordinate with USACE to determine jurisdiction.

## Threatened and Endangered Species

## APPROACH

Fish and wildlife species listed under the Federal Endangered Species Act (ESA) would need to be considered for each project. The list of species identified for Minnehaha was identified from US Fish and Wildlife Service (USFWS) information. Four threatened, endangered, or proposed species exist in Minnehaha County. These include the rufa red knot (threatened); Topeka shiner (endangered); western prairie fringed orchid (threatened); and northern long-eared bat (proposed endangered).
To identify the potential for threatened and endangered species to be present in an area, aerial imagery was used to identify potential habitat located within the project corridor. The study area is highly developed with commercial, industrial, and residential activities. Undeveloped areas are generally limited to areas associated with the Big Sioux River. Additionally, there is some cropland in the northern portion of the corridor. Habitat for the western prairie fringed orchid is not believed to occur within most of the study area due to lack of native habitat. Habitat for the Topeka shiner is found within the Big Sioux River and its tributaries, and the I-229 corridor crosses the river in multiple places. Typically within the City, the USFWS has noted for previous projects that the Topeka shiner is not anticipated to occur within these stretches of the Big Sioux River. Habitat for the rufa red knot is limited to sandy or gravel shorelines associated with the Big Sioux River. Potential habitat associated with the northern long-eared bat in the Study Area includes riparian areas and bridges along the Big Sioux River.

## LIMITATIONS

Consultation with USFWS would be required to determine which ESA-listed species have the potential to occur within each Study Area. Coordination with SD Game, Fish, and Parks would be recommended regarding impacts to state-listed sensitive species.

## Section 4(f) and Section 6(f) Properties

APPROACH
The Department of Transportation Act (DOT Act) of 1966 included a special provision Section 4(f) - which is intended to protect publicly owned parks, recreational areas, wildlife and waterfowl refuges, or public and private historical sites. Similarly, Section 6(f) protects state and locally sponsored projects that were funded as part of the Land and Water Conservation Fund (LWCF).

The LWCF website was reviewed to identify the use of Section 6(f) grants in the Study Area. Publicly owned parks and recreation areas are present within the Study Area. Public spaces within the City of Sioux Falls that have received LWCF grant money are subject to Section 6(f) regulations. The Big Sioux Trail, a recreational trail, also received LWCF grant money for portions of the trail. Additionally, if the projects proposed in these alternatives receive Federal Highway Administration (FHWA) funds, the projects will be subject to Section 4(f) consultation.

## LIMITATIONS

There have been several grants received at a variety of the City parks. Areas within the Project corridor that could impact City parks or recreational trails would need to be further reviewed to determine potential for a Section 6(f) impact. Due to the use of LWCF grants, it is recommended that consultation occur early with each project to determine the location of improvements to determine whether the park area impacted will be subject to Section 6(f) regulations.

## Floodplain

## APPROACH

The City has been a participating member of the Federal Emergency Management Agency (FEMA) Flood Insurance Program since 1979. The current Minnehaha County Flood Insurance Study (FIS) that includes the City and incorporated areas is dated September 2, 2009. The project area contains FEMA-designated zones for the Big Sioux River.

LIMITATIONS
If any projects would involve areas associated with the Big Sioux River, a floodplain permit may be required if the floodplain would be encroached upon. A Floodplain Development Application would be completed for the project and the City would obtain a Floodplain Development Permit.

## Regulated Materials

APPROACH
The SD Department of National Resources (SDDENR) Environmental Events Database website was reviewed for the Project Area to identify any areas that could be of concern for project concepts.

## LIMITATIONS

Information for hazardous material should be reviewed at the time of a proposed project to identify any potential new hazards that may have occurred from the time of the study to a project.

The environmental review findings for the l-229 corridor and interchange concepts are summarized in TAble 2.

Environmental constraints for the l-229 corridor are shown in APPENDIx D3- Environmental Constraints Maps.

Note, a noise assessment will be included at a later stage of the study.

Table 2. Preliminary Concepts Environmental Review

		Environmental Comparative Data					Environmental Summary	
ID	Description	Wetlands	T\&E	4(f) and 6(f) Properties	Cultural	Other	Anticipated Impact Level	Comments
Cliff-1	NB Cliff to SB I-229 Loop Ramp Auxiliary Lane Added	Impacts to ditch wetlands	Bridge work could require analysis to determine if bridge is considered potential northerm long-eared bat habitat. However, in accordance with the final rule on northerm long-eared bats, take is not prohibited.	No known Section 4(f)/6(f) properties are present.	Any buildings to be removed should be reviewed for potential eligibility. It is not anticipated any of the buildings would be eligible.	Some property acquisition; approximately 5 buildings.	Low	Potential wetland impacts. Potential northern long-eared bat impacts if trees are impacted, but take of the bats is not prohibited under the final rule. Property acquisition impacts.
Cliff-2	NB/SB Cliff to SB I-229 Ramp, Eliminate SB Diagonal Ramp	Impacts to ditch wetlands	Bridge work could require analysis to determine if bridge is considered potential northern long-eared bat habitat. However, in accordance with the final rule on northem long-eared bats, take is not prohibited.	No known Section 4(f)/6(f) properties are present.	Any buildings to be removed should be reviewed for potential eligibility. It is not anticipated any of the buildings would be eligible.	Some property acquisition; approximately 5 buildings.	Low	Potential wetland impacts. Potential northern long-eared bat impacts if trees are impacted, but take of the bats is not prohibited under the final rule. Property acquisition impacts.
Cliff-4	Diamond Interchange - 41st Street Realigned to High School	Potential ditch wetlands. Less potential impacts than Cliff-1 and Cliff-2	No impacts to threatened or endangered species are anticipated.	No known Section 4(f)/6(f) properties are present.	Any buildings to be removed should be reviewed for potential eligibility. It is not anticipated any of the buildings would be eligible.	Increased property acquisition when compared to Cliff 1 and 2. Approximately 7 buildings impacted. Would close the Pam Road/Cliff Avenue intersection and add a new neighborhood access to E 41st Street via 9th Avenue.	Low	May have wetland impacts, but would be minimal. Increased property acquisition required, along with new neighborhood access to E 41st Street.
Cliff-6	SPUI Interchange - 41st Street Realigned to Pam Road	Impacts to ditch wetlands. Potential for impacts is similar to Cliff-4.	Bridge work could require analysis to determine if bridge is considered potential northern long-eared bat habitat. However, in accordance with the final rule on northem long-eared bats, take is not prohibited.	No known Section 4(f)/6(f) properties are present.	Any buildings to be removed should be reviewed for potential eligibility. It is not anticipated any of the buildings would be eligible.	More property impacts than Cliff-4.   Approximately 11 buildings impacted. Would close the Pam Road/Cliff Avenue intersection and add a new neighborhood access to E 41st Street via 9th Avenue.	Low	May have wetland impacts, but would be minimal. Would reuqire the most property acquisition of these concept alternatives, along with new neighborhood access to E 41st Street.
Cliff-7	SPUI Interchange - WBT/WBR on Existing Ramp	Impacts to ditch wetlands. Potential for impacts is similar to Cliff-4.	Bridge work could require analysis to determine if bridge is considered potential northern long-eared bat habitat. However, in accordance with the final rule on northem long-eared bats, take is not prohibited.	No known Section 4(f)/6(f) properties are present.	Any buildings to be removed should be reviewed for potential eligibility. It is not anticipated any of the buildings would be eligible.	Minimal property acquisition.   Approximately 2 buildings impacted.	Low	May have wetland impacts, but would be minimal. Potential northern long-eared bat impacts if trees are impacted, but take of the bats is not prohibited under the final rule. Property acquisition impacts.
Cliff-8	Tight Diamond Interchange 41st Street Realigned to Pam Road	Impacts to ditch wetlands. Potential for impacts is similar to Cliff-4.	Bridge work could require analysis to determine if bridge is considered potential northern long-eared bat habitat. However, in accordance with the final rule on northem long-eared bats, take is not prohibited.	No known Section 4(f)/6(f) properties are present.	Any buildings to be removed should be reviewed for potential eligibility. It is not anticipated any of the buildings would be eligible.	Some property acquisition; approximately 5 buildings. Would close the Pam Road/Cliff Avenue intersection and add a new neighborhood access to E 41st Street via 9th Avenue.	Low	May have wetland impacts, but would be minimal. Potential northern long-eared bat impacts if trees are impacted, but take of the bats is not prohibited under the final rule. Property acquisition impacts.

## Construction Costs

In preparing estimates of construction costs for the preliminary concepts, quantities were developed for the following items and the unit costs shown in parenthesis were applied to the quantities:

- Bridge deck area ( $\$ 180$ or $\$ 270 /$ SF tangent or curved bridge)
- Municipal Retaining wall length (\$100/LF)
- Interstate Retaining wall length (\$600/LF)
- Interstate / ramp / street pavement area (\$20/SF)

Pavement area costs are assumed to include curb, shoulder, median, sidewalk, and drainage items. For cost estimating purposes, all retaining walls were assumed to have a constant height of 12 feet over their entire estimated length.

The pavement unit costs applied were developed from unit prices computed from the following awarded local projects:

- $57^{\text {th }} /$ Western (2013)
- Russell Street (2013)
- I-90/Cliff Ave Interchange (2013)
- Cliff Ave, $61^{\text {st }}$ to $85^{\text {th }}(2015)$
\$5.3 million total, \$21.81/SF
\$15 million total, \$18.94/SF
$\$ 15.8$ million total, $\$ 25.61 / \mathrm{SF}$ (includes bridge costs)
$\$ 8.9$ million total, $\$ 16.91 / \mathrm{SF}$

Estimated construction costs and property impacts costs for the preliminary concepts are shown in TAble 3.

Relocation costs are not included in the ROW cost estimates.

## Preliminary Concepts Composite Comparative Assessment

The four types of data compiled for the Preliminary Concepts is shown in TAble 4, along with the qualitative classification for each measure.

Table 3. Preliminary Concepts Estimated Costs

Concept ID	Description	Bridge		Retaining Wall (Municipal)		Retaining Wall (Interstate)		Interstate \& Ramps		Municipal Street		Contingency		Property Impacts		Total Cost
		Area (fit)	Cost	Length (fit)	Cost	Length (fi)	Cost	Area ( $\mathrm{ft}^{2}$ )	Cost	Area ( $\mathrm{ft}^{2}$ )	Cost	\%	Cost	Area (acre)	Cost	
Cliff-1	NB Cliff to SB I-229 Loop Ramp Auxiliary Lane Add	16,719	\$3,100,000	321	\$33,000	458	\$300,000	166,536	\$3,400,000	106,183	\$2,200,000	20\%	\$1,186,600	1.1	\$1,000,000	\$11,219,600
Cliff-2	$\begin{aligned} & \text { NB/SB Cliff to SB I- } \\ & 229 \text { Loop Ramp, } \\ & \text { Eliminate SB } \\ & \text { Diagonal Ramp } \\ & \hline \end{aligned}$	9,892	\$1,800,000	0	\$0	0	\$0	93,103	\$1,900,000	99,652	\$2,000,000	20\%	\$780,000	1.1	\$1,010,000	\$7,490,000
Cliff-4	Diamond Interchange 41st Street Realigned to High School	0	\$0	0	\$0	726	\$500,000	94,621	\$1,900,000	126,150	\$2,600,000	20\%	\$1,000,000	1.8	\$1,850,000	\$7,850,000
Cliff-6	SPUI Interchange 41st Street Realigned to Pam Road	27,523	\$5,000,000	0	\$0	1208	\$800,000	438,580	\$8,800,000	186,417	\$3,800,000	20\%	\$2,680,000	3.5	\$3,730,000	\$24,810,000
Clifi-7	SPUI Interchange SB I-229 Off Ramp Thru \& Right Turn Lanes at 41st Street Intersection	27,523	\$5,000,000	0	\$0	1141	\$700,000	445,536	\$9,000,000	115,446	\$2,400,000	20\%	\$2,420,000	0.4	\$330,000	\$19,850,000
Cliff-8	Tight Diamond   Interchange -41 st   Street Realigned to   High School	12,621	\$2,300,000	0	\$0	726	\$500,000	131,669	\$2,700,000	194,393	\$3,900,000	20\%	\$1,420,000	1.9	\$1,870,000	\$12,690,000

Table 4. Preliminary Concepts Composite Comparative Assessment

Preliminary Concept		Traffic Assessment			Environmental Impacts	Cost	ROW (acre)
		Queues	Delay	Travel Time			
Cliff-1	NB Cliff to SB I-229 Loop Ramp Auxiliary Lane Add	Neutral	Good	Neutral	Low	\$11,219,600	1.1
Cliff-2	NB/SB Cliff to SB I-229 Loop Ramp, Eliminate SB Diagonal Ramp	Neutral	Neutral	Neutral	Low	\$7,490,000	1.1
Cliff-4	Diamond Interchange - 41st Street Realigned to High School	Good	Very Good	Neutral	Low	\$7,850,000	1.8
Cliff-6	SPUI Interchange - 41st Street Realigned to Pam Road	Good	Very Good	Neutral	Low	\$24,810,000	3.5
Cliff-7	SPUI Interchange - SB I-229 Off Ramp Thru \& Right Turn Lanes at 41st Street Intersection	Neutral	Good	Neutral	Low	\$19,850,000	0.4
Cliff-8	Tight Diamond Interchange-41st Street Realigned to High School	Good	Very Good	Neutral	Low	\$12,690,000	1.9

## Appendix D3-

Environmental Constraints Maps











## Appendix E. Predictive Safety Analysis

This memorandum presents a summary of the methodology and findings for the predicted safety performance analysis for the Existing, No-Build and Build conditions for the I-229 MIS.

The I-229 MIS has been separated into individual sub-studies. The sub-studies include:

- I-229 Corridor Study
- Minnesota Avenue Corridor Study (Exit 3)
- $10^{\text {th }}$ Street Corridor Study (Exit 6)
- Benson Road Corridor Study (Exit 9)
- Rice Street Corridor Study (Exit 7)
- Cliff Avenue Corridor Study (Exit 4)

A map illustrating the overall study areas for each of the sub-studies is shown in Figure 1. The study limits for the predictive safety analysis differ slightly. In general, the predictive safety analysis limits for the l-229 Corridor Study are focused on the freeway area impacted by the corridor concepts ( $26^{\text {th }}$ Street to $10^{\text {th }}$ Street) and the remaining sub-studies focus on their respective ramps and ramp terminals. The analysis limits for each sub-study will be detailed later in this memorandum.

The predictive safety analysis presented in this memorandum is based on the principles and methods of the Highway Safety Manual (HSM) as discussed in detail below. It presents a comparative analysis of the predicted crashes anticipated between the Existing (Year 2012) condition and the Future No-Build (Year 2035) condition, as well as a comparative analysis between No-Build and Build alternatives for each sub-study. The Build alternatives to be analyzed for this study will be described later in this memorandum. The results are intended to help guide the selection of the alternatives moving forward to the alternatives analysis stage of planning.

Figure 1. I-229 MIS Study Area Map


## Methodology

Predictive safety analysis was completed using the American Association of State Highway and Transportation Officials (AASHTO) HSM methods, including the National Cooperative Highway Research Program (NCHRP) Report 17-45 methods for evaluating freeways and interchanges (now part of the HSM as a supplemental volume published in 2014). FHWA supports, and in many cases now requires, the use of HSM methods for the evaluation of proposed freeway facility improvements, including new or modified Interstate access. According to the HSM preface:
"The focus of the HSM is to provide quantitative information for decision making. The HSM assembles currently available information and methodologies on measuring, estimating, and evaluating roadways in terms of crash frequency (number of crashes per year) and crash severity (level of injures due to crashes). The HSM presents tools and methodologies for consideration of 'safety' across the range of highway activities ..."

The HSM goes on to describe a primary benefit of the predictive method, "The predictive method provides a quantitative measure of expected crash frequency under both existing conditions and conditions which have not yet occurred. This allows proposed roadway conditions to be quantitatively assessed ..." (HSM, 2010)

HSM-based crash predictions are developed using safety performance functions (SPFs) for specific facility types. The SPFs predict crash frequency for a variety of freeway types with direct consideration of factors of crash risk exposure (e.g. daily traffic volumes and segment lengths). However, crash prediction by SPF alone is limited to facilities with geometric and traffic control features that match a theoretical base condition for that facility type. To overcome this limitation to SPF applicability, crash modification factors (CMFs) are used to make adjustments to the initial SPF results to account for differences between the actual geometric and traffic control conditions and the theoretical base condition. CMFs are multiplicative factors. Thus, if a CMF greater than 1 is combined with an SPF the resulting number of predicted crashes will increase over the original SPF-based crash prediction. Conversely, a CMF less than 1 it will decrease the number of predicted crashes. For example, if an outside shoulder width is less than the assumed 10 -foot base condition, then a CMF of greater than 1 is applied to adjust the SPF results for the segment.

The HSM methodology has been in development for many years and is rapidly advancing; however, there are still many limitations where the available tools do not yet offer SPFs and/or CMFs for certain conditions. Where this is the case, recent research and crash data were also considered to overcome analysis limitations. Crash prediction methods beyond the scope of the HSM that were deemed necessary for the I-229 MIS study were agreed upon in the project Methods and Assumptions document and are described later in this section.

## Facilities, Segmentation and Data Inputs

The HSM allows for crash prediction to be conducted at the project level or site-specific level. A site-specific analysis parses the project study area into individual homogenous elements, such
as, freeway segments, ramp segments, and ramp terminal intersections. The I-229 MIS crash prediction area was segmented into 38 mainline freeway segments, 24 ramp segments, 11 ramp terminal intersections, and 4 arterial intersections. The segmentation will be provided as a digital appendix.

Crash prediction requires geometric and operational inputs to accurately compute the SPFs and apply the correct CMFs. These inputs include information such as segment length, daily traffic volume, ramp locations, merge distances, and horizontal curvature. The geometric inputs were primarily obtained from the conceptual design files and aerial photography. The traffic volume data was based on traffic counts provided by SDDOT and design year volume forecasts from the 2035 Sioux Falls Travel Demand Model.

## I-229 Mainline Segments, Entrance and Exit Ramps, and Ramp Terminals

The I-229 mainline segments, entrance and exit ramps, and ramp terminals were evaluated using HSM methods implemented using the Enhanced Interchange Safety Analysis Tools (ISATe) version j software provided by FHWA. The ISATe analysis files are provided as a digital appendix for all freeway, ramp, and ramp terminal intersection sites that were reviewed.

The ISATe does have limitations however. Specifically, the ISATe ramp terminal method does not address Single-Point Urban Interchanges (SPUIs) or Diverging Diamond Interchanges (DDIs). It only predicts crashes for a variety of more typical diamond and partial cloverleaf interchange ramp terminals. Therefore, it was necessary to develop an estimate for an "operationally-similar" diamond interchange design and then use CMFs from HDR's "Crash Prediction Analysis Procedures for Diverging Diamond Interchange (DDI), Single-Point Urban Interchange (SPUI), and Two-Lane Loop Ramp" memo dated November $4^{\text {th }}, 2015$ to modify the results to estimate the predictions for a SPUI and DDI design. Based on available SDDOT data, the preliminary CMF for conversion of a traditional diamond interchange to a SPUI is 0.63 for ramp terminal intersection crashes. Based on research done in Missouri on safety evaluations of DDIs, the preliminary CMF for conversion of a traditional diamond interchange to a DDI is 0.37 for Fatal + Injury (F+I) crashes at ramp terminal intersections and 0.49 for Property Damage Only (PDO) crashes at ramp terminal intersections.

## Cross Street Segments

Crashes within an interchange's functional area can be almost entirely predicted by evaluating the crashes from the freeway, freeway ramps, and ramp terminal intersections. However, some crashes near the interchange may be due to roadway segment characteristics of the arterial cross street. If these segment-related crashes are to be included, then HSM methods for urban and suburban arterials need to be applied. In this study, the primary area for crash prediction evaluation was focused on the interchange, and no arterial segment crashes were evaluated between scenarios.

## Arterial Intersections

Some arterial intersections were included when the sub-study concepts involved realigning ramps to arterial intersections. Therefore, to make a fair comparison, the predictive safety analysis included the impacted arterial intersection for all sub-study concepts, including

No-Build. Methods from Chapter 12 of the HSM were used for analyzing arterial intersections. The analysis files for the 4 arterial intersections analyzed are provided as a digital appendix.

## Calibration Factors

According to the HSM, "the predictive models were developed from the most complete and consistent data sets available." However, the report also recommends that the equations be calibrated for each jurisdiction because "the general level of crash frequencies may vary substantially from one jurisdiction to another." However, SDDOT has not yet conducted the extensive analyses required to develop a complete set of HSM related calibration factors. Therefore, using the national HSM equations is proposed as the best approach for this current analysis.

## Empirical Bayes Approach: Considering Historical Crash Data

The HSM method includes an optional step called the Empirical Bayes (EB) approach, which combines "the estimate from a predictive model with observed crash data to obtain a more reliable estimate of the expected average crash frequency." (HSM, 2010) Essentially, the historical crash data is used to adjust the future crash prediction. Typically, the EB method is only used when it can be applied equally to all of the alternatives under consideration. Thus the improvements being considered must be moderate, so that the historical crash data is reasonable to consider for the conditions being compared. When major alignment or traffic control changes are proposed (such as the proposed SPUl's or DDI's), it is not used because "there is typically a small difference in the results obtained from the predictive method when it is used with and without the EB Method." Therefore, "if the EB Method is not applied consistently, such differences will likely introduce a small bias in the comparison of expected crash frequency among alternatives." (HSM Supplement, 2014) Therefore, the results are presented with the EB method adjustment when comparing Existing to No-Build conditions and without the EB method adjustment when comparing No-Build to the Build alternatives.

## Planning Horizon Cost Savings

Planning horizon cost savings were calculated for the Build alternatives. The planning horizon cost savings is the discounted, monetized safety benefit from the crashes reduced by a scenario (compared to a baseline of No-Build) totaled for all years in the period 2012-2035. This shows how much money is saved (or loss) from a safety standpoint for each alternative.

## Analysis Results

The predicted number of crashes were compared for the Existing (Year 2012) and No-Build (Year 2035) conditions to see the effect on safety of the unimproved I-229 corridor with increased traffic volumes. This comparison of Existing and No-Build conditions comprises the entire crash prediction area for all six sub-studies, allowing adjacent interchanges to be compared for differences in predicted future crash frequency.

In a similar fashion, Build alternatives for each sub-study were evaluated and the predicted number of crashes was established for the 2012 to 2035 analysis period. The Build alternative
crash predictions were then compared to the No-Build crash prediction for subject interchange. Hence, the results of the crash predictions for Build alternatives are presented by sub-study.

## Existing vs. No-Build

The first stage of the crash prediction analysis was to compare the safety impact of anticipated traffic volume growth over the study horizon. The predicted annual crash frequencies for the Existing (Year 2012) and No-Build (Year 2035) conditions are presented in Table 1. For the comparison of the Existing and No-Build conditions, historical crash data was applied using the EB method adjustment.

As expected, crashes predicted for each location along l-229 increase because of the increase in traffic volume. Notably, the l-229 interchange areas experience higher levels of existing crashes than the connecting freeway segments. By 2035, those interchange areas all have nearly doubled in annual crashes. Particularly, the Benson Road interchange shows the highest increase in annual predicted crashes at 26 additional crashes per year.

Table 1: Expected Average Crash Frequency - Existing vs. 2035 No-Build


## No-Build vs. Build Alternatives

## I-229 Corridor Study

STUDY AREA
The ISATe analysis limits for the I-229 Corridor Study focus on the I-229 freeway portion from $26^{\text {th }}$ Street to $10^{\text {th }}$ Street. The analysis limits for the l-229 Corridor Study are shown in Figure 2.

Figure 2: I-229 Corridor ISATe Analysis Limits


Source: Google Earth, December 2016

## ALTERNATIVES

The alternatives to be analyzed for the I-229 Corridor Study are:

- I229-NB
- No-Build
- I229-C1
- 6-Lanes, From $26^{\text {th }}$ St to $10^{\text {th }} \mathrm{St}$
- I229-C2
- 6-Lanes, From $26^{\text {th }}$ St to $10^{\text {th }}$ St
- 65 MPH Improved Horizontal Curves


## BUILD AND NO-BUILD CRASH FREQUENCY COMPARISON

The predicted annual crash frequencies for the No-Build and Build alternatives (2012 to 2035) are presented in Table 2 along with the breakdown of Fatal + Injury ( $\mathrm{F}+\mathrm{I}$ ) and Property Damage Only (PDO) crashes.

Table 2: I-229 Corridor 2012-2035 Predicted Build and No-Build Annual Crashes


The resulting total number of annual predicted crashes is slightly lower for both Build alternatives The Build alternatives result in a 4-5\% decrease in total crashes and a 7-8\% decrease in PDO crashes, but a $2-3 \%$ increase in $\mathrm{F}+\mathrm{I}$ crashes. The cost for an $\mathrm{F}+\mathrm{I}$ crash is high so this results in a negative cost savings, which is shown below in Table 3.

Planning horizon crash cost savings were calculated for the Build alternatives and are shown in Table 3.

Table 3: I-229 Corridor Planning Horizon Crash Cost Savings

Alternative	Total User Cost ${ }^{1}$	User Cost Savings ${ }^{2}$	
No-Build	$\$ 24,600,000$	$\$$	-
I229-C1	$\$ 25,200,000$	$\$$	$(600,000)$
I229-C2	$\$ 24,900,000$	$\$$	$(300,000)$

${ }^{1}$ Total User Cost - The discounted, monetized safety benefit from the crashes totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$ ).
${ }^{2}$ User Cost Savings - The discounted, monetized safety benefit from the crashes reduced by a scenario (compared to a baseline of No-Build) totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$ ).

## Minnesota Avenue Corridor Study

STUDY AREA
The ISATe analysis limits for the Minnesota Avenue Corridor Study focus on the l-229 ramps, the ramp terminals, and the arterial intersection of Minnesota Avenue and 49 ${ }^{\text {th }}$ Street. The arterial intersection was included in the analysis because some of the Build alternatives involve realigning the l-229 westbound off-ramp to $49^{\text {th }}$ Street. The analysis limits for the Minnesota Avenue Corridor Study are shown in Figure 3.

Figure 3: Minnesota Avenue Corridor ISATe Analysis Limits


Source: Google Earth, December 2016

## ALTERNATIVES

The alternatives to be analyzed for the Minnesota Avenue Corridor Study are:

- Minn-NB
- No-Build Interchange Configuration and Corridor Configuration
- Minn-2C
- Realigns SB exit ramp with $49^{\text {th }}$ Street; full access with signal-control.
- Constructs loop ramp for NB Minnesota Ave to SB I-229.
- Provides dual left-turn lanes for all signalized entrance and exit ramps.
- Increases separation between ramp terminal / 49 ${ }^{\text {th }}$ Street intersections.
- Rebuilds Minnesota Avenue with a median and two lanes in each direction.
- Third southbound lane added through $49^{\text {th }}$ Street intersection.
- Minn-2D
- Same as Minn-2C except rebuilds Minnesota Avenue with a median and three lanes in each direction.
- Minn-5D
- Replaces Diamond Interchange with Diverging Diamond Interchange (DDI) configuration.
- Minn-8C
- Replaces Diamond Interchange with Single Point Urban Interchange (SPUI) centered at existing interchange.
- Provides dual-left turn lanes for all signalized entrance and exit ramps.
- Incorporates full, signal-controlled access at $49^{\text {th }}$ Street intersection.
- Rebuilds Minnesota Avenue with a median and two lanes in each direction.
- Third southbound lane added through $49^{\text {th }}$ Street intersection.
- Minn-8D
- Same as Minn-8C except rebuilds Minnesota Avenue with a median and three lanes in each direction.
- Minn-9D (Qualitative Analysis Only)
- Same as Minn-8D except SB I-229 through and right-turn movements are provided direct connection to $49^{\text {th }}$ Street.


## BUILD AND NO-BUILD CRASH FREQUENCY COMPARISON

The predicted annual crash frequencies for the No-Build and Build alternatives (2012 to 2035) are presented in Table 4 along with the breakdown of Fatal + Injury ( $\mathrm{F}+\mathrm{I}$ ) and Property Damage Only (PDO) crashes.

The resulting total number of annual predicted crashes is lower for all the Build alternatives when compared to No-Build, with the DDI alternative expecting the least amount of crashes. The alternatives result in a $34-55 \%$ decrease in total crashes, with a $44-70 \%$ decrease in $\mathrm{F}+1$ crashes and $26-41 \%$ decrease in PDO crashes. Minn-9D is an alternative that was originally screened out prior to the concept refinement stage. As concept refinement progressed, Minn-9D was reconsidered and reinstated as a Build alternative. Shortly following the reinstatement of Minn-9D, the overall I-229 MIS entered into the final reporting stage of the project. The project team determined that a full crash prediction analysis of Minn-9D would not provide additional value to study recommendations. The project team's qualitative assessment of Minn-9D is that the concept would likely result in slightly fewer predicted crashes than Minn-8C and Minn-8D. That qualitative assessment is based on quantitative evaluation of very similar concepts at the Cliff Avenue interchange (Cliff-6 and Cliff-7).

Table 4: Minnesota Ave Corridor 2012-2035 Predicted Build and No-Build Annual Crashes


Planning horizon crash cost savings were calculated for the Build alternatives and are shown in Table 5.

Table 5: Minnesota Avenue Corridor Planning Horizon Crash Cost Savings

Alternative	Total User Cost ${ }^{1}$	User Cost Savings ${ }^{2}$	
No-Build	$\$ 64,600,000$	$\$$	-
Minn-2C	$\$ 32,000,000$	$\$ 32,600,000$	
Minn-2D	$\$ 34,400,000$	$\$ 30,100,000$	
Minn-5D	$\$ 20,000,000$	$\$ 44,600,000$	
Minn-8C	$\$ 34,500,000$	$\$ 30,100,000$	
Minn-8D	$\$ 35,600,000$	$\$ 29,000,000$	

${ }^{1}$ Total User Cost - The discounted, monetized safety benefit from the crashes totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$ ).
${ }^{2}$ User Cost Savings - The discounted, monetized safety benefit from the crashes reduced by a scenario (compared to a baseline of No-Build) totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$ ).

## $10^{\text {th }}$ Street Corridor Study

## STUDY AREA

The ISATe analysis limits for the $10^{\text {th }}$ Street Corridor Study focus on the I-229 ramps and the ramp terminals. For the Tight Split Diamond alternative, the proposed 6 ${ }^{\text {th }}$ Street ramp terminals were also included in the analysis. Because they are new intersections, no arterial intersection was included for the other alternatives. The analysis limits for the $10^{\text {th }}$ Street Corridor Study are shown in Figure 4.

## alternatives

The alternatives to be analyzed for the $10^{\text {th }}$ Street Corridor Study are:

- $10^{\text {th }}-\mathrm{NB}$
- No-Build Interchange Configuration and Corridor Configuration

Figure 4: $10^{\text {th }}$ Street Corridor ISATe Analysis Limits


Source: Google Earth, December 2016

- $10^{\mathrm{th}}-2$
- Perpetuates Single Point Urban Interchange (SPUI) configuration.
- Provides dual left-turn lanes for all entrance and exit ramps.
- Rebuilds 10 th Street with a median and three lanes in each direction through the interchange.
- $10^{\text {th }}-5$
- Replaces Single Point Urban Interchange (SPUI) configuration with Diverging Diamond Interchange (DDI) configuration.
- Eliminates left-turn movements on $10^{\text {th }}$ Street by crossing $10^{\text {th }}$ Street traffic to the left side between the ramp terminal intersections.
- Rebuilds 10th Street with a median and three lanes in each direction through the interchange.
- $10^{\text {th }}-9$
- Replaces Single Point Urban Interchange (SPUI) configuration with Tight Split Diamond Interchange (TSD) configuration with I-229 ramp connections to both $10^{\text {th }}$ Street and $6^{\text {th }}$ Street.
- Provides dual left-turn lanes for all entrance and exit ramps except the NB entrance ramp.
- Adds traffic signals at new ramp intersections with $6^{\text {th }}$ Street.
- $10^{\text {th }}-\operatorname{Var}$ (Qualitative Analysis Only)
- Unconstrained SB Entrance \& NB Exit Ramps

BUILD AND NO-BUILD CRASH FREQUENCY COMPARISON
The predicted annual crash frequencies for the No-Build and Build alternatives (2012 to 2035) are presented in Table 6 along with the breakdown of Fatal + Injury ( $\mathrm{F}+\mathrm{I}$ ) and Property Damage Only (PDO) crashes.

Table 6: $10^{\text {th }}$ Street Corridor 2012-2035 Predicted Build and No-Build Annual Crashes


The resulting total number of annual predicted crashes is $5 \%$ less for the SPUI alternative, $29 \%$ less for the DDI alternative, and $131 \%$ more for TSD alternative. Even though the total number of crashes is less for the SPUI alternative, the $\mathrm{F}+\mathrm{I}$ crashes is slightly higher. The cost for an $\mathrm{F}+\mathrm{I}$
crash is high so this results in a negative cost savings, which is shown below in Table 7. $10^{\text {th }}-9$ results in a significant increase in crashes because the Tight Split Diamond alternative adds more exposure and conflict points from the addition of two new ramp terminals at $6{ }^{\text {th }}$ Street and two new collector-distributor roads between $10^{\text {th }}$ Street and $6^{\text {th }}$ Street. The $10^{\text {th }}-V a r$ concept would add a minor amount of crashes to $10^{\text {th }}-2$ and $10^{\text {th }}-5$ mainly due to added exposure from additional ramp length.

Planning horizon crash cost savings were calculated for the Build alternatives and are shown in Table 7.

Table 7: 10 th Street Corridor Planning Horizon Crash Cost Savings

Alternative	Total User Cost ${ }^{1}$	User Cost Savings ${ }^{2}$	
No-Build	$\$ 30,000,000$	$\$$	-
10th-2	$\$ 31,900,000$	$\$(2,000,000)$	
10th-5	$\$ 19,100,000$	$\$ 10,900,000$	
10 th-9	$\$ 67,800,000$	$\$(37,900,000)$	

${ }^{1}$ Total User Cost - The discounted, monetized safety benefit from the crashes totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$ ).
${ }^{2}$ User Cost Savings - The discounted, monetized safety benefit from the crashes reduced by a scenario (compared to a baseline of No-Build) totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$ ).

## Benson Road Corridor Study

## STUDY AREA

The ISATe analysis limits for the Benson Road Corridor Study focus on the I-229 ramps and the ramp terminals. The analysis limits for the Benson Road Corridor Study are shown in Figure 5.

## ALTERNATIVES

The alternatives to be analyzed for the Benson Road Corridor Study are:

- Benson-NB
- No-Build Interchange Configuration and Corridor Configuration
- Benson-1A
- 30 MPH 2-lane loop for NB I-229 to WB Benson Road.
- Realign I-229 NB off ramp.
- Dual right-turn lane and free right-turn movement for EB Benson Road to SB I-229.
- Raised median on Benson Road with left-turn lanes.
- Benson-1B
- Same as Benson-1A except single (instead of dual) right-turn lane and free right-turn movement for EB Benson Road to SB I-229.

Figure 5: Benson Road Corridor ISATe Analysis Limits


Source: Google Earth, December 2016

- Benson-4
- Diverging Diamond Interchange (DDI) configuration.
- Realign W I-229 ramps to maximize separation distance to Potsdam Avenue.
- Right-turn lane and 2-lane free right-turn movement for EB Benson Road to SB I-229.


## BUILD AND NO-BUILD CRASH FREQUENCY COMPARISON

The predicted annual crash frequencies for the No-Build and Build alternatives (2012 to 2035) are presented in Table 8 along with the breakdown of Fatal + Injury ( $\mathrm{F}+\mathrm{I}$ ) and Property Damage Only (PDO) crashes.

Table 8: Benson Road Corridor 2012-2035 Predicted Build and No-Build Annual Crashes


The resulting total number of annual predicted crashes is $8-9 \%$ less for the loop ramp alternatives and $45 \%$ less for the DDI alternative. The resulting annual PDO crashes is $5-6 \%$ less for the loop ramp alternatives and $33 \%$ less for the DDI alternative. The biggest safety benefit is in the $\mathrm{F}+\mathrm{l}$ crashes, which is $12-13 \%$ less for the loop ramp alternatives and $60 \%$ less for the DDI alternative.

Planning horizon crash cost savings were calculated for the Build alternatives and are shown in Table 9.

Table 9: Benson Road Corridor Planning Horizon Crash Cost Savings

Alternative	Total User Cost ${ }^{1}$	User Cost Savings ${ }^{2}$	
No-Build	$\$ 47,400,000$	$\$$	-
Benson-1A	$\$ 41,600,000$	$\$ 5,800,000$	
Benson-1B	$\$ 41,000,000$	$\$ ~ 6,300,000$	
Benson-4	$\$ 19,500,000$	$\$ 27,800,000$	

${ }^{1}$ Total User Cost - The discounted, monetized safety benefit from the crashes totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$ ).
${ }^{2}$ User Cost Savings - The discounted, monetized safety benefit from the crashes reduced by a scenario (compared to a baseline of No-Build) totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$ ).

## Rice Street Corridor Study

## STUDY AREA

The ISATe analysis limits for the Rice Street Corridor Study focus on the I-229 ramps, the ramp terminals, and the arterial intersections of Rice Street/Bahnson Avenue and Rice Street/Lowell Avenue. The arterial intersections were included in the analysis because Rice-3C involves realigning Cleveland Avenue to Bahnson Avenue and the I-229 SB Ramps to Lowell Avenue. The analysis limits for the Rice Street Corridor Study are shown in Figure 6.

Figure 6: Rice Street Corridor ISATe Analysis Limits


Source: Google Earth, December 2016

## ALTERNATIVES

The alternatives to be analyzed for the Rice Street Corridor Study are:

- Rice-NB
- No-Build Interchange Configuration and Corridor Configuration
- Rice-2
- Perpetuates Folded Diamond Interchange configuration.
- Rebuilds Rice Street with a median and three lanes in each direction through the interchange.
- Provides additional turn bays and storage length at the Rice Street/Cleveland Avenue/NB I-229 off ramp and Rice Street/Bahnson Avenue intersections.
- Rice-2A
- Same as Rice-2 except shifts and rebuilds Rice Street north of its current alignment to avoid impacts to BNSF Railroad Right-of-Way.
- Rice-3C
- Replaces Folded Diamond Interchange with an improved geometrics Folded Diamond Interchange configuration.
- Aligns SB I-229 ramps with Lowell Avenue and improves geometrics at NB I-229 ramps.
- Rebuilds Rice Street with a median and three lanes in each direction through the interchange.
- Separates conflicting traffic movements at Cleveland Avenue and the NB I-229 ramp terminal intersection by realigning Cleveland Avenue on a shifted alignment with a two-way left-turn lane and two lanes in each direction.
- Provides a grade separated crossing of Cleveland Avenue over the BNSF Railroad.
- Provides additional turn bays and storage length at the Rice Street/NB I-229 off ramp and Rice Street/Bahnson Avenue/Cleveland Avenue intersections.

Rice-2 and Rice-2A are treated the same for the predictive safety analysis because they comprise of the same cross section. The only difference between the two alternatives is that Rice-2A is shifted to the north.

BUILD AND NO-BUILD CRASH FREQUENCY COMPARISON
The predicted annual crash frequencies for the No-Build and Build alternatives (2012 to 2035) are presented in Table 10 along with the breakdown of Fatal + Injury ( $\mathrm{F}+\mathrm{I}$ ) and Property Damage Only (PDO) crashes.

Table 10: Rice Street Corridor 2012-2035 Predicted Build and No-Build Annual Crashes


The resulting total number of annual predicted crashes is lower for all the Build alternatives. The Build alternatives result in a 14-15\% decrease in total crashes, an 11-12\% decrease in PDO crashes, and an 18-20\% decrease in F+l crashes. It should be noted that the results for Rice-3C do not take into effect the safety benefit of removing two railroad at-grade crossings that result from realigning Cleveland Avenue to Bahnson Avenue. Analysis of the Rice-3C option also does not include an estimate of the change in crashes on Rice Street and Cleveland Avenue due to the significant increase in travel distance between Cleveland Avenue and the Northbound I-229 ramps.

Planning horizon crash cost savings were calculated for the Build alternatives and are shown in Table 11.

Table 11: Rice Street Corridor Planning Horizon Crash Cost Savings

Alternative	Total User Cost ${ }^{1}$	User Cost Savings ${ }^{2}$	
No-Build	$\$ 58,700,000$	$\$$	-
Rice-2/2A	$\$ 48,300,000$	$\$ 10,400,000$	
Rice-3c	$\$ 47,900,000$	$\$ 10,800,000$	

${ }^{1}$ Total User Cost - The discounted, monetized safety benefit from the crashes totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$ ).
${ }^{2}$ User Cost Savings - The discounted, monetized safety benefit from the crashes reduced by a scenario (compared to a baseline of No-Build) totaled for all years in the period 2012-2035 (rounded to \$100,000).

## Cliff Avenue Corridor Study

## STUDY AREA

The ISATe analysis limits for the Cliff Avenue Corridor Study focus on the I-229 ramps, the ramp terminals, and the arterial intersection of Cliff Avenue and $41^{\text {st }}$ Street. $41^{\text {st }}$ Street is aligned with the I-229 southbound off-ramp for all the alternatives except Cliff-6. $41^{\text {st }} \mathrm{Street}$ is realigned to Pam Road in Cliff-6 so Cliff Avenue and $41^{\text {st }}$ Street is analyzed as an arterial intersection. For the other alternatives, $41^{\text {st }}$ Street is analyzed in ISATe as a non-ramp public street leg that is present at the north ramp terminal. The intersection of Cliff Avenue and Pam Road was not analyzed because the existing number of crashes is very low. Therefore, the predicted crashes for this intersection would be negligible. The analysis limits for the Cliff Avenue Corridor Study are shown in Figure 7.

## ALTERNATIVES

The alternatives to be analyzed for the Cliff Avenue Corridor Study are:

- Cliff-NB
- No-Build Interchange Configuration and Corridor Configuration
- Cliff-1
- Adds a loop on ramp from NB Cliff Avenue to SB I-229.
- Realigns SB Cliff Avenue to SB I-229 directional ramp.
- Provides additional turn bays, storage length, and raised median at the Cliff Avenue/E $41^{\text {st }}$ Street/SB I-229 off ramp terminal intersection.

Figure 7: Cliff Avenue Corridor ISATe Analysis Limits


Source: Google Earth, December 2016

- Cliff-6
- Replaces Diamond Interchange with Single Point Urban Interchange (SPUI)
- Rebuilds Cliff Avenue with a median and two lanes in each direction.
- Realigns the E 41 ${ }^{\text {st }}$ Street/Cliff Avenue intersection north to Pam Road.
- Cliff-7
- Same as Cliff-6 except SB I-229 through and right movements utilize existing intersection location at Cliff Avenue.

BUILD AND NO-BUILD CRASH FREQUENCY COMPARISON
The predicted annual crash frequencies for the No-Build and Build alternatives (2012 to 2035) are presented in Table 12 along with the breakdown of Fatal + Injury ( $\mathrm{F}+\mathrm{I}$ ) and Property Damage Only (PDO) crashes.

Table 12: Cliff Avenue Corridor 2012-2035 Predicted Build and No-Build Annual Crashes


The resulting total number of annual predicted crashes is lower for all the Build alternatives, with Cliff-7 showing the least amount of crashes. The Build alternatives result in a $10-26 \%$ decrease in total crashes, a $10-28 \%$ decrease in PDO crashes, and a $9-24 \%$ decrease in $F+I$ crashes.

Planning horizon crash cost savings were calculated for the Build alternatives and are shown in Table 13.

Table 13: Cliff Avenue Corridor Planning Horizon Crash Cost Savings

Alternative	Total User Cost ${ }^{1}$	User Cost Savings ${ }^{2}$	
No-Build	$\$ 42,900,000$	$\$$	-
Cliff-1	$\$ 39,100,000$	$\$ 3,800,000$	
Cliff-6	$\$ 32,900,000$	$\$ 10,100,000$	
Cliff-7	$\$ 32,600,000$	$\$ 10,400,000$	

${ }^{1}$ Total User Cost - The discounted, monetized safety benefit from the crashes totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$ ).
${ }^{2}$ User Cost Savings - The discounted, monetized safety benefit from the crashes reduced by a scenario (compared to a baseline of No-Build) totaled for all years in the period 2012-2035 (rounded to $\$ 100,000$ ).

## Conclusions

Based on the preceding HSM analysis, the following conclusions can be drawn for the entire I-229 MIS study:

- Crashes predicted for each location along I-229 increase for the No-Build (Year 2035) condition compared to the Existing (Year 2012) condition because of the increase in traffic volume. Notably, the l-229 interchange areas experience higher levels of existing crashes than the connecting freeway segments.
- For the I-229 Corridor Study, both Build alternatives decrease the total number of crashes. However, the fatal and injury crashes increase slightly so there is an increase in user cost.
- For the $10^{\text {th }}$ Street Corridor Study, the SPUI and DDI alternatives decrease the total number of crashes. However, the fatal and injury crashes increase slightly for the SPUI alternative so there is an increase in user cost. The Tight Split

Diamond alternative increases the total number of crashes 131\% because it adds two new ramp terminals at $6^{\text {th }}$ Street and two new collector-distributor roads between $10^{\text {th }}$ Street and $6^{\text {th }}$ Street.

- For the remaining corridor studies (Minnesota Avenue, Benson Road, Rice Street, Cliff Avenue), all Build alternatives decrease crashes compared to their respective No-Build alternatives.
- If the alternatives with the highest safety benefit for all sub-studies were chosen, the entire I-229 corridor would see approximately $\$ 104$ million in user cost savings.

The safety evaluation, along with traffic operations, environmental impacts, property impacts, and construction and right-of-way cost, helped select alternatives and prioritize the phasing of each sub-study.

## Appendix F. Year of Failure Analysis

This technical memorandum documents the Year of Failure analysis for the I-229 Major Investment Study (MIS), serving as part of the overall documentation for the I-229 MIS project. The content provided in Appendix B1. Traffic Capacity Analysis Methodologies should be referenced to supplement the content in this memorandum.

The purpose of the l-229 MIS is to develop a comprehensive plan for improvements needed along I-229, its interchanges, and its cross streets through a horizon year of 2035. While proposed improvement projects recommended by the study were designed to meet operational and design criteria by 2035, elements of existing and proposed corridor infrastructure have service lives beyond 20-30 years after initial construction. The year of failure analysis is one type of analysis that considers conditions beyond the horizon year.

A year of failure analysis helps decision makers roughly assess how long after the design or horizon year a proposed interchange design will operate acceptably. The longer the interchange operates sufficiently, the longer down the road the interchange will have prior to additional investments to deal with future capacity constraints.

This memorandum presents a summary of the methodology and findings for the year of failure analysis for the No-Build and Build alternatives for the I-229 MIS. The Build alternatives to be analyzed for this study will be described later in this memorandum. The results are intended to help guide the selection of the alternatives moving forward to the alternatives analysis stage of planning.

## Study Area

The I-229 MIS has been separated into individual sub-studies. The sub-studies include:

- I-229 Corridor Study
- Minnesota Avenue Corridor Study (Exit 3)
- $10^{\text {th }}$ Street Corridor Study (Exit 6)
- Benson Road Corridor Study (Exit 9)
- Rice Street Corridor Study (Exit 7)
- Cliff Avenue Corridor Study (Exit 4)

A map illustrating the overall study areas for each of the sub-studies is shown in Figure 1. For the year of failure analysis, the area of study was reduced to the interchanges. For the I-229 Corridor Study, the year of failure analysis limits focus on two interchanges that do not have their own sub-study: Louise Avenue and Western Avenue. The remaining sub-studies, focus on their respective interchanges. The analysis does not include identifying year of failure for I-229 freeway segments. The first signalized intersection beyond each interchange ramp terminal was also included to model the arrival flow profile approaching the ramp terminal intersections.

## Methodology

## Volume Development

Traffic volumes were developed for the AM and PM peak hours on each cross street and each intersection within the study area until year of failure was identified. Volumes were developed for up to 30 years beyond the project future/design year (Year 2035) and at 5-year increments. The volumes beyond 2035 were linearly extrapolated using existing year (Year 2012) and future year (Year 2035) volumes. The traffic volume data was based on traffic counts provided by SDDOT and design year volume forecasts from the 2035 Sioux Falls Travel Demand Model.

## Year of Failure Criteria

For the year of failure analysis, LOS 'D' was used as the worst allowable LOS for future year ramp terminal intersection operations. The interchange alternatives were considered failing when one of the ramp terminals was projected to operate at an average intersection LOS 'E' or ' $F$ ' or an intersection turning movement was projected to operate at LOS ' $F$ '.

Figure 1. I-229 MIS Study Area Map


## Analysis Results

## I-229 Corridor Study

## Alternatives

The alternatives to be analyzed for the I-229 Corridor Study are:

- Louise-NB
- Louise No-Build Interchange
- Western-NB
- Western No-Build Interchange


## Year of Failure Results

The resulting year of failure for the I-229 Corridor Study alternatives is shown in Table 1.
Table 1 - I-229 Corridor Year of Failure

Alternative	Year of Failure
Louise-NB	Beyond 2065
Western-NB	2040

## Minnesota Avenue Corridor Study

## Alternatives

The alternatives to be analyzed for the Minnesota Avenue Corridor Study are:

- Minn-NB
- No-Build Interchange Configuration and Corridor Configuration
- Minn-2C
- Realigns SB exit ramp with $49^{\text {th }}$ Street; full access with signal-control.
- Constructs loop ramp for NB Minnesota Ave to SB I-229.
- Provides dual left-turn lanes for all signalized entrance and exit ramps.
- Increases separation between ramp terminal / 49 ${ }^{\text {th }}$ Street intersections.
- Rebuilds Minnesota Avenue with a median and two lanes in each direction.
- Third southbound lane added through $49^{\text {th }}$ Street intersection.
- Minn-2D
- Same as Minn-2C except rebuilds Minnesota Avenue with a median and three lanes in each direction.
- Minn-5D
- Replaces Diamond Interchange with Diverging Diamond Interchange (DDI) configuration.
- Minn-8C
- Replaces Diamond Interchange with Single Point Urban Interchange (SPUI) centered at existing interchange.
- Provides dual-left turn lanes for all signalized entrance and exit ramps.
- Incorporates full, signal-controlled access at $49^{\text {th }}$ Street intersection.
- Rebuilds Minnesota Avenue with a median and two lanes in each direction.
- Third southbound lane added through $49^{\text {th }}$ Street intersection.
- Minn-8D
- Same as Minn-8C except rebuilds Minnesota Avenue with a median and three lanes in each direction.
- Minn-9D (Qualitative Analysis Only)
- Same as Minn-8D except SB I-229 through and right-turn movements are provided direct connection to $49^{\text {th }}$ Street.


## Year of Failure Results

The resulting year of failure for the No-Build and Build alternatives is shown in Table 2. Minn-9D is an alternative that was originally screened out prior to the concept refinement stage. As the concept refinement progressed, Minn-9D was reconsidered and reinstated as a Build alternative. The project team's qualitative assessment of Minn-9D is that the concept would likely result in a year of failure beyond the year of failure for Minn-8D. That qualitative assessment is based on quantitative evaluation of very similar concepts at the Cliff Avenue interchange (Cliff-6 and Cliff-7).

Table 2 - Minnesota Avenue Corridor Year of Failure

Alternative	Year of Failure
Minn-NB	Earlier than 2035
Minn-2C	2045
Minn-2D	2045
Minn-5D	2060
Minn-8C	2040
Minn-8D	2060
Minn-9D	Beyond 2060 (Estimation)

## $10^{\text {th }}$ Street Corridor Study

## Alternatives

The alternatives to be analyzed for the $10^{\text {th }}$ Street Corridor Study are:

- $10^{\text {th }}-\mathrm{NB}$
- No-Build Interchange Configuration and Corridor Configuration
- $10^{\text {th }}-2$
- Perpetuates Single Point Urban Interchange (SPUI) configuration.
- Provides dual left-turn lanes for all entrance and exit ramps.
- Rebuilds 10th Street with a median and three lanes in each direction through the interchange.
- $10^{\text {th }}-5$
- Replaces Single Point Urban Interchange (SPUI) configuration with Diverging Diamond Interchange (DDI) configuration.
- Eliminates left-turn movements on $10^{\text {th }}$ Street by crossing $10^{\text {th }}$ Street traffic to the left side between the ramp terminal intersections.
- Rebuilds 10th Street with a median and three lanes in each direction through the interchange.
- $10^{\text {th }}-9$
- Replaces Single Point Urban Interchange (SPUI) configuration with Tight Split Diamond Interchange (TSD) configuration with I-229 ramp connections to both $10^{\text {th }}$ Street and $6^{\text {th }}$ Street.
- Provides dual left-turn lanes for all entrance and exit ramps except the NB entrance ramp.
- Adds traffic signals at new ramp intersections with $6^{\text {th }}$ Street.


## Year of Failure Results

The resulting year of failure for the No-Build and Build alternatives is shown in Table 3.
Table 3 - 10 $^{\text {th }}$ Street Corridor Year of Failure

Alternative	Year of Failure
10 th-NB	Earlier than 2035
$10^{\text {th }}-2$	Beyond 2065
$10^{\text {th }}-5$	Beyond 2065
$10^{\text {th }}-9$	Beyond 2065

## Benson Road Corridor Study

## Alternatives

The alternatives to be analyzed for the Benson Road Corridor Study are:

- Benson-NB
- No-Build Interchange Configuration and Corridor Configuration
- Benson-1A
- 30 MPH 2-lane loop for NB I-229 to WB Benson Road.
- Realign I-229 NB off ramp.
- Dual right-turn lane and free right-turn movement for EB Benson Road to SB I-229.
- Raised median on Benson Road with left-turn lanes.
- Benson-1B
- Same as Benson-1A except single (instead of dual) right-turn lane and free right-turn movement for EB Benson Road to SB I-229.
- Benson-4
- Diverging Diamond Interchange (DDI) configuration.
- Realign W I-229 ramps to maximize separation distance to Potsdam Avenue.
- Right-turn lane and 2-lane free right-turn movement for EB Benson Road to SB I-229.


## Year of Failure Results

The resulting year of failure for the No-Build and Build alternatives is shown in Table 4.
Table 4 - Benson Road Corridor Year of Failure

Alternative	Year of Failure
Benson-NB	Earlier than 2035
Benson-1A	2050
Benson-1B	2050
Benson-4	2045

## Rice Street Corridor Study

## Alternatives

The alternatives to be analyzed for the Rice Street Corridor Study are:

- Rice-NB
- No-Build Interchange Configuration and Corridor Configuration
- Rice-2
- Perpetuates Folded Diamond Interchange configuration.
- Rebuilds Rice Street with a median and three lanes in each direction through the interchange.
- Provides additional turn bays and storage length at the Rice Street/Cleveland Avenue/NB I-229 off ramp and Rice Street/Bahnson Avenue intersections.
- Rice-2A
- Same as Rice-2 except shifts and rebuilds Rice Street north of its current alignment to avoid impacts to BNSF Railroad Right-of-Way.
- Rice-3C
- Replaces Folded Diamond Interchange with an improved geometrics Folded Diamond Interchange configuration.
- Aligns SB I-229 ramps with Lowell Avenue and improves geometrics at NB I-229 ramps.
- Rebuilds Rice Street with a median and three lanes in each direction through the interchange.
- Separates conflicting traffic movements at Cleveland Avenue and the NB I-229 ramp terminal intersection by realigning Cleveland Avenue on a shifted alignment with a two-way left-turn lane and two lanes in each direction.
- Provides a grade separated crossing of Cleveland Avenue over the BNSF Railroad.
- Provides additional turn bays and storage length at the Rice Street/NB I-229 off ramp and Rice Street/Bahnson Avenue/Cleveland Avenue intersections.


## Year of Failure Results

The resulting year of failure for the No-Build and Build alternatives is shown in Table 5.
Table 5 - Rice Street Corridor Year of Failure

Alternative	Year of Failure
Rice-NB	Earlier than 2035
Rice-2	2045
Rice-2A	2045
Rice-3C	2045

## Cliff Avenue Corridor Study

## Alternatives

The alternatives to be analyzed for the Cliff Avenue Corridor Study are:

- Cliff-NB
- No-Build Interchange Configuration and Corridor Configuration
- Cliff-1
- Adds a loop on ramp from NB Cliff Avenue to SB I-229.
- Realigns SB Cliff Avenue to SB I-229 directional ramp.
- Provides additional turn bays, storage length, and raised median at the Cliff Avenue/E $41^{\text {st }}$ Street/SB I-229 off ramp terminal intersection.
- Cliff-6
- Replaces Diamond Interchange with Single Point Urban Interchange (SPUI)
- Rebuilds Cliff Avenue with a median and two lanes in each direction.
- Realigns the E 41 ${ }^{\text {st }}$ Street/Cliff Avenue intersection north to Pam Road.
- Cliff-7
- Same as Cliff-6 except SB I-229 through and right movements utilize existing intersection location at Cliff Avenue.


## Year of Failure Results

The resulting year of failure for the No-Build and Build alternatives is shown in Table 6.
Table 6 - Cliff Avenue Corridor Year of Failure
Alternative Year of Failure

Cliff-NB	Earlier than 2035
Cliff-1	2050
Cliff-6	2055
Cliff-7	2045

## Conclusion

The year of failure analysis, along with safety impacts, environmental impacts, property impacts, construction and right-of-way cost, and other traffic operations, helped screen alternatives and prioritize the phasing of each sub-study. Between the two interchanges in the I-229 Corridor Study (Louise Avenue and Western Avenue), Western Avenue is the next interchange after 2035 that will need to be addressed for operational issues.

Appendix G -
Sub-Study 6 Noise Study Technical Report

## Noise Study Technical Report

## I-229 Major Investment Corridor Study

Sub-Study \#6

Sioux Falls, South Dakota
HDR Project Number: 207030

December 2016

## I-229 Major Investment Corridor Study (Sub-Study \#6)

## NOISE STUDY TECHNICAL REPORT

## EXECUTIVE SUMMARY

The South Dakota Department of Transportation (SDDOT) initiated this study in order to address the current and future transportation needs along the entire I-229 corridor. Sub-Study \#6 assesses existing and future conditions along the Cliff Avenue Corridor, which includes a combination of interchange concepts and corridor concepts (the Project). Three (3) Build Alternatives were evaluated as part of Sub-Study \#6 (Cliff-1, Cliff-6 and Cliff-7).

On behalf of SDDOT, and as part of the environmental documentation, HDR Engineering, Inc. (HDR) performed a traffic noise analysis along the Cliff Avenue corridor's area of influence for the proposed improvements. The analysis included traffic noise monitoring and modeling. HDR used the FHWA Traffic Noise Model (TNM), Version 2.5, to evaluate projected traffic noise levels under the "Build" alternatives. If applicable, traffic noise impacts were identified in accordance with SDDOT Noise Analysis and Abatement Guidance (July 13, 2011). In areas where future noise levels exceed state and federal criteria, the conceptual feasibility of noise mitigation options is discussed if warranted.

Traffic noise levels were evaluated for the existing conditions and future Build Alternatives Cliff-1, Cliff-6 and Cliff-7 at 80 receptors in the Project area. There is 1 traffic noise impact predicted under the Existing Alternative; 11 impacts predicted under Future Build Alternative Cliff-1, 19 impacts predicted under Future Build Alternative Cliff-6 and 8 impacts predicted under Future Build Alternative Cliff-7.
Table of Contents
EXECUTIVE SUMMARY ..... 2

1. Introduction ..... 4
2. Nature of Noise ..... 5
3. SDDOT Noise Analysis and Abatement Guidance ..... 7
4. Noise Prediction Method ..... 8
5. Adjacent Land Use ..... 9
6. Model Validation ..... 9
6.1. Field Testing Procedure ..... 9
6.2. Instrumentation ..... 10
6.3. Field Measurement Methods ..... 10
6.4. Field Measurement Locations ..... 10
6.5. Model Validation Results ..... 11
7. Traffic Noise Prediction ..... 11
8. Noise Impact Analysis ..... 15
8.1. Impacts ..... 15
8.1.1. Alternative Cliff-1 ..... 15
8.1.2. Alternative Cliff-6 ..... 15
8.1.3. Alternative Cliff-7 ..... 15
9. Noise Abatement Measures ..... 16
9.1. Discussion of Feasibility of Noise Barriers (based on SDDOT Guidance) ..... 16
10. Construction Noise and Vibration ..... 18
11. Information for Local Officials ..... 19
12. Conclusion ..... 19
13. References ..... 19

## 1.Introduction

The South Dakota Department of Transportation (SDDOT) initiated this study in order to address the current and future transportation needs along the entire I-229 corridor. Sub-Study \#6 assesses existing and future conditions along the Cliff Avenue Corridor, which includes a combination of interchange concepts and corridor concepts (the Project). Three (3) Build Alternatives were evaluated as part of Sub-Study \#6 (Cliff-1, Cliff-6 and Cliff-7). Figure 1 shows the project area.

The study fulfills the following objectives:

1. Complete a traffic level of service analysis for both existing and future (2035) conditions on the I-229 mainline, select interchanges and crossroads.
2. Complete a safety analysis of I-229 mainline, interchanges and crossroads.
3. Identify locations on I-229 not in compliance with current design standards under both the current and forecasted future traffic conditions.
4. Determine the effects of incidents on traffic operations within the l-229 corridor's area of influence.
5. Develop a long range plan consisting of feasible solutions to address the portions of the Interstate System that fail to meet current design standards, traffic level of service expectations, and/or have identifiable safety concerns under both the current and forecasted future traffic conditions.
6. Create final products for use by the SDDOT which will guide the Department in the implementation of recommended improvements that will maximize the efficiency of the system.

Three (3) Build Alternatives were evaluated as part of Sub-Study \#6.

1. Cliff-1: Adds a loop on-ramp from northbound Cliff Avenue to southbound I-229; realigns southbound Cliff Avenue to southbound I-229 directional ramp; provides additional turn bays, storage length, and raised median at the Cliff Avenue/E 41 ${ }^{\text {st }}$ Street/southbound I229 off-ramp terminal intersection; rebuilds the southbound and northbound I-229 bridges over Cliff Avenue; maintains existing traffic signal locations.
2. Cliff-6: Replaces Diamond Interchange with Single Point Urban Interchange (SPUI); rebuilds Cliff Avenue with a median and two lanes in each direction; realigns the E $41^{\text {st }}$ Street/Cliff Avenue Intersections north to Pam Road; Closes the Pam Road/Cliff Avenue Intersection and adds a new neighborhood access to E $41^{\text {st }}$ Street via $9^{\text {th }}$ Avenue; rebuilds the southbound and northbound I-229 bridges over Cliff Avenue; adds traffic signals at the SPUI Interchange and E $41^{\text {st }}$ Street/Cliff Avenue Intersection.
3. Cliff-7:Replaces Diamond Interchange with a SPUI; Southbound I-229 through and right movements utilize existing Intersection location at Cliff Avenue; rebuilds Cliff Avenue with a median and two lanes in each direction; provides additional turn bays and storage length at the reconstructed Intersections; rebuilds the southbound and northbound bridges over Cliff Avenue; maintains the existing traffic signal location at the $E 41^{\text {st }}$ Street/Cliff Avenue Intersection and adds a new traffic signal at the SPUI Interchange.

HDR Engineering, Inc. (HDR) performed a highway traffic noise analysis for SDDOT in support of the Project, as part of the environmental documentation. The analysis is based on the SDDOT Noise Analysis and Abatement Guidance (July 13, 2011). Results of the analysis are presented in this report.

## 2.Nature of Noise

Noise is defined as unwanted or excessive sound. Sound becomes unwanted when it interferes with normal activities, such as sleep, work, speech, or recreation. Vehicle noise is a combination of the noise produced by the engine, exhaust, and tires. Noise levels from highway traffic are affected by three factors: (1) the volume of the traffic, (2) the speed of the traffic, and (3) the number of trucks in the flow of traffic. Generally, traffic noise increases commensurate with these three factors.

Noise is measured in decibels (dB) - a logarithmic scale. Because human hearing is not equally sensitive to all frequencies of sound, certain frequencies are given more "weight." The Aweighted scale corresponds to the sensitivity range for human hearing. Therefore, noise levels are measured in dBA, the A-weighted sound level in decibels. When noise levels change 3-dBA, the change is considered barely perceptible to human hearing. However, a $5-\mathrm{dBA}$ change in noise level is clearly noticeable. A 10-dBA change in noise levels is perceived as a doubling or halving of noise loudness, while a $20-\mathrm{dBA}$ change is considered a dramatic change in loudness. Table 1 shows noise levels associated with common, everyday sources and helps the reader more fully understand the magnitude of noise levels discussed in this report.

Table 1: Common Noise Sources and Levels

Sound Pressure Level (dB)	
120	Jet aircraft takeoff at 100 feet
110	Same aircraft at 400 feet
90	Motorcycle at 400 feet
80	Garbage disposal
70	City street corner
60	Conversational speech
50	Typical office
40	Living room (without TV)
30	Quiet bedroom at night

Source: Environmental Impact Assessment Handbook, ed. by Rau and Wooten, 1980

Figure 1: Project Location


6 | December 2016

## 3.SDDOT Noise Analysis and Abatement Guidance

The updated (July 13, 2011) SDDOT Noise Analysis and Abatement Guidance (Guidance), upon which this analysis is based, is intended to supplement FHWA traffic noise and abatement regulations and guidance. The Guidance provides procedures for noise studies and noise abatement measures to help protect the public health and welfare, to supply noise abatement criteria, and to establish requirements for traffic noise information to be given to those officials who have planning and zoning authority.

The Guidance contains noise abatement criteria that are based on the Leq(h), which is used to analyze traffic noise levels and identify noise impacts. The Leq is defined as the equivalent, steady-state sound level that, in a stated period of time, contains the same acoustic energy as the time-varying sound level during the same period. Therefore, for the purposes of this analysis, Leq can be considered the average sound level and Leq(h) can be considered the average sound level occurring over a one-hour time period. It is representative of the overall (average) traffic-generated noise level expressed on an hourly basis.

Land uses are assigned to an activity category based on the type of activities occurring in each area (i.e. picnic areas, churches, commercial land, and undeveloped land). Activity Categories are then ordered based on their sensitivity to traffic noise levels. NAC are assigned to each Activity Category. These NAC represent the maximum traffic noise levels that allow uninterrupted land use within each Activity Category. Table 2 summarizes noise abatement criteria corresponding to various land use activity categories. Activity categories and related traffic noise impacts are determined based on the actual land use in a given area.

Table 2: Noise Abatement Criteria

Activity			
Leq(h)	$\begin{array}{c}\text { 23 CFR 772 Noise Abatement Criteria } \\ \text { Evaluation } \\ \text { Location }\end{array}$		
A	57	Exterior	$\begin{array}{l}\text { Lands on which serenity and quiet are of extraordinary } \\ \text { significance and serve as an important public need and where } \\ \text { the preservation of those qualities is essential if the area is to } \\ \text { continue to serve its intended purpose. }\end{array}$
Activity			

Highway traffic noise impacts occur when the predicted traffic noise levels for the design year approach (reach 1 decibel less than) or equal/exceed the NAC contained in 23 CFR 772 (Table 2), or when the predicted traffic noise levels substantially exceed the existing noise levels by 15 dBA , even though the predicted levels may not exceed the NAC.

## 4.Noise Prediction Method

Traffic noise levels were determined by using the FHWA Traffic Noise Model (TNM), Version 2.5. Basic model inputs are:

- Preliminary project concept and geometry
- 2035 traffic volumes in the Project Area (Appendix A)
- The operational speed for I-229: 65 miles per hour (mph); arterial streets: $30-45 \mathrm{mph}$

The traffic volume used for this analysis is the AM Peak Hourly Volume (PHV) traffic. Traffic was provided in a February 2015 HDR Technical Memo. Traffic volumes for the future "Build" condition were assumed to be the same as the future "No-Build" volumes.

## 5.Adjacent Land Use

Eighty (80) receptors were identified in the project area. The l-229 Cliff Avenue corridor is located east of I-29 in the Sioux Falls metropolitan area. The Cliff Avenue Corridor study limits include an approximately 0.36 mile section of Cliff Avenue from approximately Park Road to approximately E $38^{\text {th }}$ Street.

Land use immediately adjacent to this Project is a combination of commercial/industrial, residential, a church and a recreational area. If no exterior areas of frequent human use are present at the commercial/retail locations, no further noise analysis is required. Figures located in Appendix B provide an aerial view of the project area.

## 6.Model Validation

Existing traffic noise levels were measured in the field and then compared against computer modeling results to verify the accuracy of the computer model. When modeled and measured levels are within + or -3 dBA of one another, this indicates that the model is within the accepted level of accuracy.

### 6.1. Field Testing Procedure

On November 2, 2015, HDR staff measured traffic noise levels at representative sites throughout the project corridor. Traffic noise measurements were conducted in accordance with the FHWA-PD-96-046 Measurement of Highway Related Noise (May 1996). The average meteorological conditions were reported as shown in Table 3 below.

Table 3: Meteorological Conditions

Temperature	$\cong 61^{\circ} \mathrm{F}$
Humidity	$\cong 62 \%$
Wind	$<12 \mathrm{mph}$
Conditions	Partly Cloudy
Barometric Pressure	$\cong 29.81$ inches

### 6.2. Instrumentation

Traffic noise monitoring was conducted using a Larson Davis 824 Sound Level Meter (SLM). Table 4 summarizes the instruments used to measure existing traffic noise levels for this noise analysis report.

Table 4: Noise Analysis Instrumentation Summary

Instrument	Make	Model	Serial Number
Sound Analyzer 1	Larson Davis	824	$824 A 2636$
Calibrator	Larson Davis	CAL200	3722

### 6.3. Field Measurement Methods

The SLM was programmed to compute the Leq(h). The following procedures were used for noise monitoring:

- The duration of the Leq(h) measurements was 15 minutes.
- The SLM was calibrated before and after monitoring. No significant calibration drifts were detected.
- The microphone was mounted on a tripod 5 feet above the ground.
- The microphone was covered with a windscreen.


### 6.4. Field Measurement Locations

Table 5 describes the location of the validation site in the project corridor.
Table 5: Noise Validation Location

Measurement Location	Description
K	$\approx 35$ ' of S Cliff Ave

The validation location is shown in Appendix B, and is within 35 feet of the nearest roadway outside lane.

### 6.5. Model Validation Results

The measured and modeled noise levels for each of the monitoring sites selected along the project corridor are presented in Table 6. Each set of predicted and measured data was found to be within the acceptable + or -3 dBA tolerance; therefore, the model is considered to be validated.

Table 6: Model Validation Results

Measurement   Location	Measured	Leq(h)(dBA)   Modeled	Difference
K	66.2	63.6	-2.6

## 7.Traffic Noise Prediction

HDR used the FHWA TNM, Version 2.5, to evaluate future traffic noise levels at noise sensitive receptors within the limits of the Project. The TNM model accounts for the elevation differences and the proposed roadway alignment in relation to the noise-sensitive sites. Table 7 lists the NAC, existing Leq(h), and the future (2035) modeled Leq(h) for both the "Existing" and "Build" alternatives. Noise receptor locations are shown in Appendix B.

Table 7: Predicted Noise Levels at Receptors

$\begin{aligned} & \text { Receptor } \\ & \text { ID } \end{aligned}$	Land Use	$\begin{gathered} \mathrm{NAC} \\ \mathrm{~dB}(\mathrm{~A}) \end{gathered}$	Hourly Leq(h) dBA						
								tween	
			Existing	Cliff-1	Cliff-6	Cliff-7	Cliff-1	Cliff-6	Cliff-7
Shaded cells indicate noise levels that exceed the NAC									
373	B	66	58.9	64.8	64.7	64.7	5.9	5.8	5.8
374	B	66	59.7	65.3	65.1	65.1	5.6	5.4	5.4
375	B	66	59.8	65.0	64.8	64.7	5.2	5.0	4.9
376	B	66	59.6	64.5	64.3	64.3	4.9	4.7	4.7
377	B	66	59.6	64.1	63.8	63.8	4.5	4.2	4.2
378	B	66	59.4	64.5	64.2	64.2	5.1	4.8	4.8
379	B	66	59.3	64.5	64.2	64.2	5.2	4.9	4.9
380	B	66	59.2	64.5	64.1	64.1	5.3	4.9	4.9
381	B	66	59.4	64.8	64.4	64.4	5.4	5.0	5.0
382	B	66	59.4	64.5	64.0	64.0	5.1	4.6	4.6
383	B	66	59.1	64.2	63.8	63.8	5.1	4.7	4.7
384	B	66	59.2	64.3	63.9	63.9	5.1	4.7	4.7
385	B	66	59.6	64.8	64.4	64.4	5.2	4.8	4.8
386	B	66	59.5	64.7	64.3	64.3	5.2	4.8	4.8
387	B	66	59.9	64.9	64.6	64.6	5.0	4.7	4.7
388	B	66	60.1	65.3	65.0	65.0	5.2	4.9	4.9
389	B	66	60.2	64.9	64.8	64.7	4.7	4.6	4.5
390	B	66	60.3	64.7	64.6	64.6	4.4	4.3	4.3
391	B	66	60.2	64.5	64.4	64.4	4.3	4.2	4.2
392	B	66	60.1	64.2	64.1	64.1	4.1	4.0	4.0
393	B	66	60.1	64.1	63.9	64.0	4.0	3.8	3.9
394	B	66	60.3	64.1	64.1	64.0	3.8	3.8	3.7
395	B	66	67.5	68.3	Note 1	Note 1	0.8	N/A	N/A
396	B	66	65.8	66.6	Note 1	66.2	0.8	N/A	0.4
397	B	66	65.1	66.1	Note 1	65.6	1.0	N/A	0.5
398	B	66	64.1	65.5	Note 1	64.8	1.4	N/A	0.7
399	B	66	63.1	65.3	Note 1	64.6	2.2	N/A	1.5
400	B	66	62.7	65.2	Note 1	64.5	2.5	N/A	1.8
401	B	66	62.3	65.2	Note 1	64.6	2.9	N/A	2.3
402	B	66	61.5	64.7	Note 1	64.2	3.2	N/A	2.7
403	B	66	60.9	64.4	64.9	64.0	3.5	4.0	3.1
404	B	66	60.5	64.2	64.2	63.8	3.7	3.7	3.3
405	D	51	44.2	48.0	47.9	47.9	3.8	3.7	3.7
406	C	66	62.8	63.8	62.9	62.9	1.0	0.1	0.1
407	C	66	63.2	64.3	63.6	63.6	1.1	0.4	0.4
408	C	66	63.4	64.5	64.3	64.3	1.1	0.9	0.9


$\begin{aligned} & \text { Receptor } \\ & \text { ID } \end{aligned}$	Land Use	$\begin{gathered} \mathrm{NAC} \\ \mathrm{~dB}(\mathrm{~A}) \end{gathered}$	Hourly Leq(h) dBA						
			2012		035 Buil			tween	
			Existing	Cliff-1	Cliff-6	Cliff-7	Cliff-1	Cliff-6	Cliff-7
Shaded cells indicate noise levels that exceed the NAC									
409	C	66	63.4	64.7	64.5	64.5	1.3	1.1	1.1
410	C	66	65.0	66.2	65.1	65.1	1.2	0.1	0.1
411	C	66	65.8	67.0	66.5	66.5	1.2	0.7	0.7
412	C	66	64.8	66.1	65.9	65.9	1.3	1.1	1.1
413	C	66	64.8	66.3	66.1	66.1	1.5	1.3	1.3
414	C	66	65.1	66.4	66.3	66.3	1.3	1.2	1.2
415	C	66	64.9	66.2	66.1	66.1	1.3	1.2	1.2
416	C	66	65.2	66.4	66.4	66.4	1.2	1.2	1.2
417	C	66	65.2	66.4	66.4	66.4	1.2	1.2	1.2
530	B	66	57.2	60.2	60.4	59.9	3.0	3.2	2.7
531	B	66	57.8	60.9	61.0	60.6	3.1	3.2	2.8
532	B	66	58.1	61.4	61.3	61.0	3.3	3.2	2.9
533	B	66	58.8	62.1	62.0	61.8	3.3	3.2	3.0
534	B	66	59.7	63.1	63.0	62.7	3.4	3.3	3.0
535	B	66	60.2	63.1	63.2	62.6	2.9	3.0	2.4
537	B	66	58.9	61.1	61.7	60.9	2.2	2.8	2.0
538	B	66	59.4	61.6	62.1	61.4	2.2	2.7	2.0
539	B	66	59.5	61.8	62.2	61.5	2.3	2.7	2.0
540	B	66	60.0	62.3	62.6	61.9	2.3	2.6	1.9
541	B	66	61.1	63.3	63.9	62.7	2.2	2.8	1.6
544	B	66	61.9	63.1	64.5	62.7	1.2	2.6	0.8
545	B	66	62.0	63.1	64.6	62.7	1.1	2.6	0.7
546	B	66	62.2	63.3	64.8	62.9	1.1	2.6	0.7
547	B	66	63.1	64.0	66.1	63.6	0.9	3.0	0.5
549	B	66	63.4	64.3	Note 1	64.0	0.9	N/A	0.6
550	B	66	63.6	64.3	Note 1	64.1	0.7	N/A	0.5
551	B	66	64.8	65.5	Note 1	65.1	0.7	N/A	0.3
552	B	66	64.2	64.8	Note 1	64.5	0.6	N/A	0.3
6000	B	66	58.2	63.0	62.7	62.7	4.8	4.5	4.5
6001	B	66	58.2	62.9	62.7	62.7	4.7	4.5	4.5
6002	B	66	58.3	62.8	62.6	62.6	4.5	4.3	4.3
6003	B	66	58.5	62.8	62.6	62.5	4.3	4.1	4.0
6004	B	66	58.6	62.6	62.4	62.3	4.0	3.8	3.7
6005	B	66	58.8	62.7	62.6	62.5	3.9	3.8	3.7
6006	B	66	59.0	62.9	62.6	62.5	3.9	3.6	3.5
6007	B	66	57.6	61.9	61.6	61.6	4.3	4.0	4.0
6008	B	66	57.0	61.2	60.9	60.9	4.2	3.9	3.9


$\begin{aligned} & \text { Receptor } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { Land } \\ & \text { Use } \end{aligned}$	$\begin{gathered} \mathrm{NAC} \\ \mathrm{~dB}(\mathrm{~A}) \end{gathered}$	Hourly Leq(h) dBA						
			$2012$   Existing	2035 Build			Difference between Existing/Build		
				Cliff-1	Cliff-6	Cliff-7	Cliff-1	Cliff-6	Cliff-7
Shaded cells indicate noise levels that exceed the NAC									
6009	B	66	58.0	61.9	61.6	61.6	3.9	3.6	3.6
6010	B	66	57.8	61.7	61.4	61.3	3.9	3.6	3.5
6011	B	66	57.4	61.2	61.0	60.8	3.8	3.6	3.4
6012	B	66	56.9	60.7	60.5	60.3	3.8	3.6	3.4
6013	B	66	56.3	60.1	60.0	59.7	3.8	3.7	3.4
6014	B	66	57.4	62.0	61.7	61.7	4.6	4.3	4.3
6015	B	66	56.6	60.9	60.5	60.4	4.3	3.9	3.8

Note 1: This receptor will be acquired as part of the proposed project.

## 8. Noise Impact Analysis

Noise abatement measures are considered when predicted traffic noise levels approach or exceed the NAC, or when the predicted traffic noise levels substantially exceed existing noise levels. As shown in Table 8, there are 15 traffic noise impacts predicted under the Existing Alternative; 42 impacts predicted under Future Build Alternatives 2-C2 and 2A-C2, and; 29 impacts predicted under Future Build Alternative 3C-C2.

Table 8: Impact Summary

Alternative	Approach/   Exceed   NAC	Substantially   Exceed	Total   Receptors   Affected
Existing	1	0	1
Build - Cliff-1	11	0	11
Build - Cliff-6	19	0	19
Build - Cliff-7	8	0	8

### 8.1. Impacts

### 8.1.1. Alternative Cliff-1

The difference between the existing 2012 and the predicted 2035 Build noise levels range from +0.6 to +5.9 dBA . The difference in noise levels can be accounted for by the increase in traffic between the existing and build alternatives as well as any changes in geometry. Results of this analysis indicate that 11 traffic noise impacts are predicted to occur as a result of Alternative Cliff1.

### 8.1.2. Alternative Cliff-6

The difference between the existing 2012 and the predicted 2035 Build noise levels range from +0.1 to +5.8 dBA . The difference in noise levels can be accounted for by the increase in traffic between the existing and build alternatives as well as any changes in geometry. Results of this analysis indicate that 19 traffic noise impacts are predicted to occur as a result of Alternative Cliff6.

### 8.1.3. Alternative Cliff-7

The difference between the existing 2012 and the predicted 2035 Build noise levels range from +0.1 to +5.8 dBA . The difference in noise levels can be accounted for by the increase in traffic between the existing and build alternatives as well as any changes in geometry. Results of this analysis indicate that 8 traffic noise impacts are predicted to occur as a result of Alternative Cliff-7.

## 9.Noise Abatement Measures

Per the scope for this sub-study, "in areas where future noise levels exceed state and federal criteria (23 CFR, Part 772 and the SDDOT noise policy), noise mitigation options will be identified and the conceptual feasibility of those options will be described. A detailed analysis of the cost reasonability of noise mitigation options will not be conducted at the corridor study phase. In addition, this task excludes specific public involvement for noise mitigation features such as providing ballots to owners and tenants of impacted properties."

Impacts are predicted as a result of all of the Build alternatives. Potential traffic noise abatement measures that could be considered for Build Alternatives Cliff-1, Cliff-6 and Cliff-7 are listed below, along with reasons why some are considered infeasible.

1. Modifying the proposed horizontal and/or vertical alignments of the roadway

- Several different alignments are under investigation

2. Traffic management measures (e.g. modify speed limits and restrict truck traffic)

- Impractical given the type of road in question

3. Construction of noise barriers along or within the ROW

- Potentially possible; to be discussed further in Section 9.1.

4. Acquisition of property rights for construction of noise barriers

- Potentially possible; would be investigated further in final design.

5. Acquisition of property to serve as a buffer zone

- Prohibitively expensive


### 9.1. Discussion of Feasibility of Noise Barriers (based on SDDOT Guidance)

All of the following conditions must be met in order for noise abatement to be considered feasible.
Failure to achieve any single element of feasibility will result in the noise abatement measure being deemed not feasible. Further investigation into feasibility and reasonability (noise reduction goal, cost-effectiveness, viewpoints of benefited receptors) would need to occur once a preferred alternative is selected.

## Feasibility

When a traffic noise impact is identified on a project, noise abatement will be considered and evaluated for engineering and acoustical feasibility.

## - Engineering feasibility:

- Safety: An abatement measure will be deemed not feasible if it causes an excessive restriction of sight distance, continuous shadow resulting in icing or snow accumulation on driving lanes, or severe drainage problems associated either with the barrier or flood-prone areas.
- Barrier height: The design of each proposed barrier will be considered on an individual basis when determining barrier height. The designed height of any proposed barrier may be adjusted based on feasibility and reasonableness considerations. Due to safety concerns, SDDOT will generally not construct barriers higher than 20 feet.
- Topography: If the topography is such that an abatement measure cannot be built, then it will be deemed not feasible.
- Drainage and utilities: A noise abatement measure is not feasible if access to drainage and utilities cannot be maintained.
- Maintenance of the abatement measure, maintenance access to adjacent properties, and access to adjacent properties: A noise abatement measure is not feasible if access to the abatement measure, side streets, driveways, ramps, etc., cannot be maintained.
- Acoustic Feasibility: A noise abatement measure is considered acoustically feasible when a minimum of 60 percent of front-row receptors directly behind the noise wall (noise wall must extend entirely across receptor's property line) achieve a 5 dBA noise reduction.

To be most effective, a noise barrier must be long and continuous to prevent sounds from passing around the ends in a manner that reduces or compromises the noise reduction provided by the noise barrier. It must also be solid, with few, if any, holes, cracks or openings. The majority of the impacts with each proposed alternative occur along l-229. There is sufficient right-of-way for noise barriers that are continuously long-enough with no breaks or openings to be designed. Noise barriers shielding many of the impacted receptors along I-229 are potentially feasible. Further detailed analysis would need to be performed when a preferred alternative has been chosen to further examine individual noise barrier feasibility and reasonableness.

Noise barriers shielding the impacted receptors along the crossroads are unlikely to be feasible as a lack of sufficient right-of-way to construct many of the noise barriers is available and lack of access control would create too many openings in the noise barrier to allow access to driveways and cross-streets.

## 10. Construction Noise and Vibration

Construction of the Project would result in temporary noise and vibration increases within the Project area. The evaluation and control of construction noise and vibration must be considered along with traffic noise. This Project is bordered by commercial and residential receptors for which impacts from construction noise and vibration are a concern.

The following are basic categories for mitigation measures for construction noise. Due to the interrelatedness of construction noise and vibration, some of these measures will also apply for vibration resulting from construction activities.

Design Considerations: Design considerations include measures in the plans and specifications to minimize or eliminate adverse impacts. The proposed changes and their proximity to noise sensitive receptors were considered during design.

Community Awareness: It is important for people to be made aware of the possible inconvenience construction can cause, and to know its approximate duration so they can plan their activities accordingly. It is SDDOT's policy to submit such Project information to all local news media.

Source Control: Source control involves reducing noise impacts from construction by controlling the noise emissions at their source. This can be accomplished by specifying proper muffler systems, either as a requirement in the plans and specifications on this Project or through an established local noise ordinance requiring mufflers. Contractors generally maintain proper muffler systems on their equipment to ensure efficient operation and to minimize noise for the benefit of their own personnel as well as the adjacent receptors.

Site Control: Site control involves the specification of certain areas where extra precautions should be taken to minimize construction noise. One way to reduce construction noise impacts at sensitive receptors is to operate stationary equipment, such as air compressors or generators, as far away from the sensitive receptors as possible. Another method might be placing a temporary noise barrier in front of the equipment. As a general rule, good coordination between the project engineer, the contractor and the affected receptors is less confusing, less likely to increase the cost of the project , and provides a more personal approach to work out ways to minimize construction noise impacts in the more noise-sensitive areas.

Time and Activity Constraints: Limiting working hours on a construction site can be very beneficial during the hours of sleep or on Sundays and holidays. However, most construction activities do not occur at night and usually not on Sundays. Exceptions due to weather, schedule, and time-related phases of construction could occur. Enforcement of such constraints could be handled through a general city or county ordinance, either listing the exceptions or granting them on a case-by-case basis.

## 11. Information for Local Officials

Local officials will be provided with information on noise compatible planning techniques that can be used to prevent future highway traffic noise impacts. To assist local officials within whose jurisdiction a Type I highway project is located, SDDOT will provide information on future noise levels for each Activity Category located along the project. This is accomplished by providing a copy of the noise analysis report to the local official. The local official will also be provided with an estimation of future noise levels at various distances from the highway (Appendix B Noise Contours).

## 12. Conclusion

Traffic noise levels were evaluated for the existing conditions and future Build Alternatives Cliff-1, Cliff-6 and Cliff-7 at 80 receptors in the Project area. There is 1 traffic noise impact predicted under the Existing Alternative; 11 impacts predicted under Future Build Alternative Cliff-1, 19 impacts predicted under Future Build Alternative Cliff-6 and 8 impacts predicted under Future Build Alternative Cliff-7.

## 13. References

South Dakota Department of Transportation, "Noise Analysis and Abatement Guidance," July 13, 2011.

Federal Highway Administration (FHWA), "Procedures for Abatement of Highway Traffic Noise and Construction Noise," July 13, 2011.

Methods for evaluation and control of construction noise were taken from the FHWA Special Report - "Highway Construction Noise: Measurement, Prediction and Mitigation."

## Appendix A Traffic Volumes















## Appendix B <br> Figures








## Appendix H. Public Involvement

The general public and public agencies were involved throughout the study process, with public meetings, landowner meetings, a website, and other techniques.

## Public meetings

## Public Meeting \#1

The first Public Open House was held on October $30^{\text {th }}, 2013$. This meeting included an overview presentation describing the drivers of the I-229 Major Investment Corridor Study, types of findings the study will eventually result in, how to get/stay involved in the study, schedule, and next steps. Meeting notes, sign-in sheets, public comments, and PowerPoint slides from this open house can be found in the APPENDIX.

## Public Meeting \#2

The second Public Open House meetings were held on June $1^{\text {st }}$ and $2^{\text {nd }}, 2015$. A presentation at the meeting provided a summary of study efforts to date, including the 2035 No-Build peak hour level of service results, conceptual ideas for I-229 mainline and interchange improvements and next steps in the study. Meeting notes, sign-in sheets, public comments, and PowerPoint slides from this open house can be found in the APPENDIX.

## Cliff Avenue and Rice Street Public Meetings

The Cliff Avenue and Rice Street crossroad corridors were originally a part of the I-229 Corridor Study. During the development of the analysis of the potential concepts, it was determined to separate these corridors into their own sub-studies. The first Public Open House for these two corridors was held on June $22^{\text {nd }}$, 2016. A presentation at the meeting provided a summary of study efforts to date, including the 2035 No-Build peak hour level of service results, conceptual ideas for I-229 mainline and interchange improvements and next steps in the study. Meeting notes, sign-in sheets, public comments, and PowerPoint slides from this open house can be found in the APPENDIX.

## Public Meeting \#3

The third Public Open House (and second for the Cliff Avenue and Rice Street crossroad corridors) was held on December $6{ }^{\text {th }}, 2016$. A presentation at the meeting provided a summary of study efforts to date, including the alternative scenario evaluation results, alternative scenarios recommended for further consideration. Meeting notes, sign-in sheets, public comments, and PowerPoint slides from this open house can be found in the APPENDIX.

## Business/Landowner Group Meetings

Business/landowner group meetings were held on the following dates for the following sub-studies:

- I-229 Exit 3 (Minnesota Avenue) Crossroad Corridor Study
- Stakeholder Meeting \#1 - December 16 ${ }^{\text {th }}, 2014$
- Stakeholder Meeting \#2 - December 6 ${ }^{\text {th }}, 2016$
- I-229 Exit 4 (Cliff Avenue) Crossroad Corridor Study
- Stakeholder Meeting \#1 - June $22^{\text {nd }}, 2016$
- Stakeholder Meeting \#2 - December $5^{\text {th }}, 2016$
- I-229 Exit 6 (10th Street) Crossroad Corridor Study
- Stakeholder Meeting \#1 - December 16 ${ }^{\text {th }}, 2014$
- Stakeholder Meeting \#2 - December $5^{\text {th }}, 2016$
- I-229 Exit 7 (Rice Street) Crossroad Corridor Study
- Stakeholder Meeting \#1 - June 22 ${ }^{\text {nd }}, 2016$
- Stakeholder Meeting \#2 - December 6 ${ }^{\text {th }}, 2016$
- I-229 Exit 9 (Benson Road) Crossroad Corridor Study
- Stakeholder Meeting \#1 - December 15 ${ }^{\text {th }}, 2014$
- Stakeholder Meeting \#2 - December $5^{\text {th }}, 2016$

All of the meetings were designed to allow landowners within the study area to discuss specific issues regarding their properties with study staff. In addition, several meetings were held with individual landowners where specific improvement options, and the associated impacts of those options, were discussed. Meeting notes, sign-in sheets, public comments, and PowerPoint slides from all the meetings can be found in the APPENDIX.

## Study Advisory Team

The Study Advisory Team, comprised of representatives of the Federal Highway Administration, South Dakota Department of Transportation, City of Sioux Falls, and the Sioux Falls
Metropolitan Planning Organization, met periodically during the study to guide the study process and provide agency input. Members of the Study Advisory Team are shown in TABLE 1.

Table 1. Study Advisory Team Members

NAME	AGENCY
Shannon Ausen	City of Sioux Falls - Public Works
Mike Behm	SDDOT - Project Development
Christina Bennett	SDDOT - Operations Support
Jeff Brosz	SDDOT - Transportation Inventory Management
Andy Vandel	SDDOT - Project Development (Safety)
Joel Gengler	SDDOT - Right of Way
Amber Gibson	Sioux Falls MPO
Kevin Goeden	SDDOT - Bridge Design
Steve Gramm	SDDOT - Project Development (Planning)
Heath Hoftiezer	City of Sioux Falls - Public Works
Mark Hoines	FHWA


Dave Huft	SDDOT - Research
Bruce Hunt	FHWA
Scott Jansen	SDDOT - Mitchell Region
Captain Alan Welsh	South Dakota Highway Patrol
Ryan Kerkvliet	Sioux Falls MPO - Citizens Advisory Committee
Tom Lehmkuhl	SDDOT - Project Development (Environmental)
Pete Longman	SDDOT - Road Design
Ron McMahon	FHWA
Paul Nikolas	SDDOT - Road Design
Brad Remmich	SDDOT - Project Development (Planning)
Craig Smith	SDDOT - Mitchell Region

## Website

A study provided easy access to information and documents prepared as part of the study. The website address was: WWW.I229STUDY.COM


The website provided project updates throughout the course of the study.

The "Get Involved" page provided opportunity for website visitors to submit a project comment or question.


The "Resources" page included links to relevant ongoing transportation studies in the area, as well as previously written documents referred to as part of the I-229 MIS.


## MPO Meetings

The study team met with the Sioux Falls MPO in November 2013 and May 2015. The meetings on November $13^{\text {th }}$ and $14^{\text {th }}$, 2013 followed Public Meeting \#1, and the meetings on May $20^{\text {th }}$ and $21^{\text {st }}, 2015$ followed Public Meeting \#2. The formal presentations given at these MPO meetings were the same meeting materials as discussed at the public meetings.

Public Meeting \#1 - October 30 ${ }^{\text {Th }}, 2013$

- Meeting Notes
- Sign-In Sheets
- Comments
- PowerPoint Slides

Subject: 1229 MiS Public Open House \#1	
Client: SDDOT	
Froject: 1229 Corridur Study	Project No: 207030
Meeting Date: October $30^{\text {th }}, 2013$	Meeting Location:
Notes by: $H 2$	

Debrief Record: The following notes were provided by study participants to members of the study team during the meeting while reviewing the various open house displays.
1.) Many comments around providing better crossings for ped's and bike's along the $I 229$ corridor. They find it very hard to get from one side to the other since most interchanges only have sidewalk on one side. Connections directly to the bike trail would be great.
2.) Several comments on how poor the $26^{\text {th }}$ Street Interchange is and that the SB off/on ramp is so short it causes accidents and many people slide off of the road due to the tight SB on ramp curve.
3.) A few members heard a desire to finish the $49^{\text {th }}$ Street extension as they believe it is long overdue.
4.) Interstate users believe that aux. lanes from $10^{\text {th }}$ Street to $26^{\text {th }}$ Street should be implemented soon.
5.) The interchange at $10^{\text {th }}$ Street and the proximity of Cleveland Avenue is not good; this area doesn't work because one intersection backs up the other. Need to figure out something different at Cleveland.
6.) Many believe the I229 corridor needs to be 3 lanes in each direction to handle the traffic that we will see in the future.
7.) A few noted that placing a half interchange at $60^{\text {th }}$ Street north would dramatically improve access to the industrial park and would reduce congestion at Benson Road.
8.) Folks from the SF Bike Club indicated that they would not use $10^{\text {th }}$ Street as a bike route due to the driveway access. Rather have a route on $6^{\text {th }}$ Street or $12^{\text {th }}$ Street or both.
9.) Encourage the industrial park businesses to stagger shifts to reduce peaks in the traffic along the interstate.
10.) Maintain Access to businesses along Minnesota; don't place a median that will take away half of my traffic.
11.) Build the bridge over the BSR east of Hwy 11 on the $57^{\text {th }}$ Street alignment so everyone doesn't have to enter the east side of the City on SD 42 which will reduce congestion on $10^{\text {th }}$ Street.
12.) Lower the speed limit on $I 229$ to 55 mph .
13.) Interested in the placement of variable speed limits on I229, have seen these in other locations and area easy to follow.
14.) $S B$ on Ramp at $10^{\text {th }}$ does not work well due to the structure in such close proximity.
15.) Summer mowing practices may need to be modified to insure grass is kept shorter to improve sight from ramp to interstate as vehicle merges with mainline from the on-ramp.
16.) Horizontal curves between $10^{\text {th }}$ and $26^{\text {th }}$ can be a problem during winter events.
17.) Conflicting comments heard regarding noise walls, some folks say they are needed and believe they need to be built soon and others felt that it would make their home "feel like a prison" to have a noise wall in their backyard and that the noise isn't that bad.
18.) An auxiliary lane is needed along SB I-229 between Louise Avenue and the I-29 NB ramp.
19.) On I-29, there needs to be a third lane / auxiliary lane between I-229 and 57 ${ }^{\text {th }}$ Street (Outside of Study Area).
20.) Need an interchange on $1-29$ @ $85^{\text {th }}$ Street to allow for southern Sioux Falls to continue growing. (Outside of Study Area).
21.) Would like a crossing of I-229 for 33 rd Street.
22.) Removing Yeager Road would be bad for $26^{\text {th }}$ Street between I-229 and Cliff Avenue.
23.) There was concern over the elevation for the future $26^{\text {th }}$ Street. There's also a "dip" in $26^{\text {th }}$ Street at the old railroad bridge that they hope will be fixed with the new interchange.



Please print clearly. Thank you




Please print clearly. Thank you,





Please pint clearly. Thanh you.



Please print clearly. Thank you,


subuece	I-229 Major Investment Corridor Study - Yablic Open Ilouse \#\#		
Sillent	Gily of Sioux Falla / South Dakota Department of Transpurtation		
Freject	PL 0100487 ) 3616P, PCN 04tK	Procel No :	207030
Masaly Suler	Wednerday, Oct $30{ }^{\text {H2 }}, 2013$ 530-7:0n PM	$\begin{aligned} & \text { Moeling } \\ & \text { Lnotitit: } \end{aligned}$	Sipux Fralla Convention Center


	int clearly. Thank you.  		Wve	Hexmak
1	Mary : Jack Murtenserm		Co5.321.0507	Many Sparkligher.erg
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				

# I-229 Major Investment Corridor Study <br> PL 0100 (87) 3616P, PCN 044 K 

## EITYOF SIOUX FALLS <br> PUBLIC WORKS

Mail: HDR Engineering, Inc. ATTN: Jason Kjenstad 6300 S. Old Village Place, Suite 100

WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresee? Please submit your comments before Nov $8^{\mathrm{A}}, 2013$ to:

## E-mail: Jason.Kjenstad $\oplus$ hdrinc.com

Fax: 605-977-7747
Sioux Falls, SD 57108-2102

(opbionsl)
Name: Address: $\qquad$
Phone: $\qquad$ Email: $\qquad$

## 1-229 Major Investment Corridor Study <br> PL 0100 ( 87 ) 3616P, PCN 044K

CITY OF SIOUXFALLS
PUBLICWORKS Frowiang a Berter guinty of Ufefor Man

Mail: HDR Engincering, Inc. ATTN: Jason Kjenstad 6300 S. Old Village Place, Suite 100
Sioux Falls, SD S7108-2102

WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresee? Please submit your comments before Nov 8 ${ }^{\text {th }}, 2013$ to:

E-mail: Jason.Kjenstad@hdrinc.com
Fax: 605-977-7747


CITY OF SIOUX FALLS PUBLIC WORKS Providing a Better Quality of Le for You

## I-229 Major Investment Corridor Study

PL 0100 (87) 3616P, PCN 044K

WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresee? Please submit your comments before Nov $8^{\text {th }}, 2013$ to:

## E-mail: Jason.Kjenstad@hdrinc.com

Fax: 605-977-7747

(osbonal)
Name:
Address:
Email: $\qquad$

Kjenstad, Jason
From: BlueMail@bluehost.com
Sent: Wednesday, October 16, 2013 3:05 PM
To:
Subject:

> email@i229study.com

Message from BlueMail

Your BlueMail form has been completed, following are the results:
Field Value
Name Chris Parsley
Org Falls Area Bicyclists, President
Address2 7001 W 66th St
CSZ Sioux Falls, SD 57106
Phone2 319-389-1507
Email2 cmparsley@gmail.com
Study2 I-229 Corridor Study
According to item 2, consider that bicycles operate as vehicles and make sure that the 1229 crossings
Comments are safe for bicyclists. I would also ask that a pedestrian crossing be considered from South Phillips over I229 and connecting to the multi use path on the other side.
redirect2 http://www.i229study.com/thank-you.html

Kjenstad, Jason
From:
Chris Parsley [cmparsley@gmall.com](mailto:cmparsley@gmall.com)
Sent: Wednesday, October 30, $20135,33 \mathrm{PM}$
To:
Kjenstad, Jason
Subject:
1229 MIS

Some of my concerns involve getting pedestrians and bicyclists over 1229 safely. I have not seen anything in the plan that addresses this issue.

From:	BlueMail@bluehost.com
Sent:	Sunday, October 27, 2013 7.23 PM
To:	emall@i229study.com
Subject:	Message from BlueMail

Your BlueMail form has been completed, following are the results:
Field Value
Name Jonathan Kail
Org N/A
Address 21515 S Glendale Ave
CSZ Sioux Falls, SD 57105-1417
Phone (605) 321~2517
Email 2 ikeil@hotmal.com
Study 2 $\mathrm{I}-229$ Corridor Study
rive lived in Sioux Falls my whole life and am planing in the near future to relocate to the Twin Cities to attend a graduate program at the University of Minnesota in urban planing and design. After reviewing this study (as well as having seen the city and its traffic grow by leaps and bounds in the 25 years I've lived here), I have several ideas as to how we can possibly create new or reconfigure existing exits along the 1-229 corridor. A few of these would require "hybrid" exits so-to-speak...but seeing how well the freeway systems work in the Twin Cities, I believe we would be

Comments able to maximize efficiency in traffic flow along the corridor for decades to come (not to mention a couple of ideas for the stretch of I-29 from I-229 to 41 st St ). These would provide increased access to the Empire/Empire East and the Interstate Crossing Business Park. I don't have professional software or anything with which I can already provide detailed plans...however, I would enjoy being able to meet with or talk to someone about my ideas and see if there is a plausibility aspect to them. Granted, I also am not very privy to things like costs or right-of-way, but having an analytical and mathematical mind, I feel I am able to see how things could be improved in a number of ways. I'd love to hear back from someone just to offer some proposals. Thank you for your time!
redirect 2 http://www.i229study.com/thank-you.html

$$
\begin{aligned}
& \text { - wants a consuectron for } 69^{\text {th }}+I 29 \\
& \text { - nothing really new between writion and Rice }
\end{aligned}
$$

Kjenstad, Jason

From:
Sent:
To:
Cc:
Subject:

Thomas Hem [theinmail@gmall.com](mailto:theinmail@gmall.com)
Monday, November 04, 2013 9:38 AM
Kjenstad, Jason
Jeff R. Mindt; Shally Rogen; Brian Sather (gdenttd@hotmall.com); Eric \& Mary Stormo (estormo@uswest.net)
I-229 Major Investment Coridor Study

Jason,
This emall is in regards to your meeting on October 30th, 2013.
Please be advised that I own, with four other partners, the property call Minnesota Crossing located on the corner of 43 rd and Minnesota Ave.
I am extremely concemed that you and your planning group are going to attempt to take our accesses away from the building located at 3508 S Minnesota Ave., just north of the Taylor Oil building.

I am hoping, with advance notice, your engineering team can design an appropriate exit on $1-229$ and Minesota Ave so that you will be able to keep and maintain the integrity of my real estate accoss points. This real estate truly enhances its value because of the customers traveling south and approaching my strip mall as well as those customers coming from the South traveling North.
Lets make sure that we work toward the common goal of keeping both those access directions open from both north and south and not try to consider a median in the middle of the road way to eliminate $1 / 2$ of our customer base.

Please be sure to forward all design concepts that you are discussing or considering so that we may include our input to find a win win solution.
I will watch for your reply and acknowledgement that you will provide me with all concept drawings that you are considering.

Thanks for your help in advance.
Tom Hein

From:	BlueMail@bluehost.com
Sent:	Wednesday, November 06, 2013 5:06 PM
To:	email@i229study.com
Subject:	Message from BlueMail

Your BlueMail form has been completed, following are the results:
Field Value
Name Robin Solberg-Versluys
Org
Address 21205 S Gordon Dr
CSZ Sioux Falls SD 57110
Phone2 605-331-5015
Email2 robin.versluys@gmail.com
Study2 I-229 Exit 9 (Benson Rd) Study
I work in the Industrial Park area and have noticed how bad the traffic is on East Benson getting on I229 South. I take E54th St N to Lewis Avenue then south to Benson. There are two lanes that turn left (east) on to Benson Rd off Lewis. However, there is approximately $1 / 2$ mile for everyone from the two lanes to merge together into one lane to get onto I229 south. If someone is nice enough to let you in to the lane, you need to be very careful as the people in front of you are usually stopping for others that need to be let in. I can only imagine how many accidents or close calls there have been in
Comments this area. The second part of the problem is there is a street closer to the exit (Potsdam Ave) in which you have other people trying to get onto Benson. I think it would be more beneficial if there were two lanes to turn south onto I229 and merge prior to entering I229 (similar to the exit on the Benson and I29, and 12th and I29), and possibly a stop light on Potsdam to help those travelers get onto Benson. There are two lanes getting off of I229 onto Benson and i think the traffic would flow a lot better if the other side (south bound exit) would have two lanes also. Thank you, Robin Solberg-Versluys
redirect2 http://www.i229study.com/thank-you.html

Kjenstad, Jason

From:	Mark Miller [mark.miller@siomidco.net](mailto:mark.miller@siomidco.net)
Sent:	Sunday, November 17, 20139:56 AM
To:	Kenstad, Jason
Subject:	$1-229$ Coridor Study

I live in south Sioux Falls and work by Sanford Research in northern Sioux Falls. I know the traffic well on 229 . Traffic is solid during peak commute times. People are becoming more impatient and careless with their driving habits. I notice cars weaving between traffic, cutting off other drivers while jockeying for a better position for the Benson Road exit. That exit is overwhelmed during rush hours. Last week there was a accident on the ramp, causing traffic to backup in the 2 outside lanes of 229 all the way down to the Rice Street exit. The other problem is traffic merging on Benson to go south on 229. Again, impatient drivers and dangerous driving decisions.

Here are my suggestions:

- put in a haff-diamond interchange at 229 and 60 th Street N . This will alleviate the load on Benson tremendously, Without question this would be my first choice. It would be the most cost effective development to address the traffic congestion at Benson.
- widen 229 to four lanes. The reality is that traffic is bad now and is going to get worse as the north industrial parks continue to develop. Completing Hwy 100 is a long ways out and will not provide relief in time.

Kjenstad, Jason

From:	BlueMail@bluehost.com
Sent:	Sunday, December 01, 2013 7:52 PM
To:	email@i229study.com
Subject:	Message from BlueMail

Your BlueMail form has been completed, following are the results:
Field Value
Name Michael Christensen
Org
Address2 1813 S Purdue Ave
CSZ Sioux Falls, SD, 57106
Phone2 605-929-8923
Email2 mytzpyk@gmail.com
Study2 I-229 Corridor Study
Please include Cliff Ave in the study: because the Cliff Ave interchange is so similar to the Minnesota Ave interchange I am surprised that it is not being included in this study. I understand there may be vehicular factors that logically cause its exclusion, however the issues faced by pedestrians and bicyclists are the same as Minnesota Ave interchange. Consider bike \& pedestrian crash data in your analysis, please. Minnesota Ave \& Cliff Ave proximity to bike trail: please

Comments recognize and plan to include better movement or access from north of I-229 to the bike trail south of I-229. I-229 blocks a major path of desire for non-motorized access to the city's best and more frequently used park feature. Fix it. Add width to the outside lanes on Minnesota Ave. Add better sidewalk visibility and controls. Bridges: add pedestrian bridges over I-229 south from West Ave, south from Phillips Ave, and east from 35 th St. Itâ $\mathrm{TM}^{\mathrm{TM}}$ hard for me to believe justification exists for the pedestrian bridge west from Teem Drive over I-29 that doesnâ $\epsilon^{\mathrm{TM}}$ t exists for any of these three possibilities.
redirect2 http://www.i229study.com/thank-you.html

Kjenstad, Jason

From:	BlueMail@bluehost.com
Sent:	Monday, December 02, 2013 8:08 PM
To:	email@i229study.com
Subject:	Message from BlueMail

Your BlueMail form has been completed, following are the results:

Field	Value
Name	Art Holden

Org
Address2 705 W Victory Ln
CSZ Sioux Falls
Phone2 6053713928
Email2 art@thundergeeks.com
Study2 I-229 Corridor Study
Please take active transportation options seriously in this study. Investments in pedestrian and cycling infrastructure have been proven to increase property values, spur economic growth, and

Comments enhance public health. I think a pedestrian bridge on South Phillips toward Tomar park would connect a large portion of central Sioux Falls to the trail and park system. I believe this would be heavily used and very valuable to the citizens of Sioux Falls. Thank you for the opportunity to voice my opinions.
redirect2 http://www.i229study.com/thank-you.html


I-229 Major Investment Corridor Study Public Open House
October $30^{\text {th }}, 2013-5: 30 \mathrm{pm}$ to 7:00 pm

## Study Advisory Partners

## Advisory Agencies



South Dakota Department of Transportation (SDDOT)

South Dakota Highway Patrol

City of Sioux Falls
Consultant Team HDR
HDR Engineering, Inc.
 HR Green, Inc.

Sioux Falls Metropolitan Planning Organization (MPO)

Federal Highway
Administration (FHWA)

## Primary Contacts

## Study Area Map

 I-229 Corridor StudySolberg Avenue Overpass to
60th Street N. Overpass

## Additional Studies

Exit 3 - Minnesota Ave
Exit $6-10^{\text {th }}$ Street
Exit 9 - Benson Road

## What is Driving this Study?

Louise Avenue Area - 1990's


Louise Avenue Area - 2010’s


## What is Driving this Study?



## What is Driving this Study?

Benson Rd Street Area - 1990’s Benson Rd Street Area - 2010’s


## What is Driving this Study?



## What Should the Study Tell Us?



## What Should the Study Tell Us?



## What Should the Study Tell Us?



## What Should the Study Tell Us?

## - Traffic Capacity

- Traffic Safety
- Incident Management
- Short \& Long Term Planning

Chart 5-P: MPO Community 2035 Growth Projections


## What Should the Study Tell Us?

- Traffic Capacity
- Traffic Safety
- Incident Management
- Short \& Long Term Planning
- Coordinated Implementation



## Why Additional Studies?

- Previous Planning Studies have indicated that Exit 3 (Minnesota Avenue), Exit 6 (10 th Street), and Exit 9 (Benson Road) will need improvements along with possible crossroad corridor improvements.



## Exit 3 (Minnesota Avenue)

 Crossroad Study Goals- Reduce traffic congestion
- Evaluate interchange options
- Integrate plans for the $49^{\text {th }}$ Street Extension with the interchange options developed
- Improve pedestrian and bike access to the Big Sioux River Pathway
- Improve safety for corridor users
- Improve vehicle safety to Yankton Trail Park



## Exit 6 (10 ${ }^{\text {th }}$ Street)

## Crossroad Study Goals

- Reduce traffic congestion
- Develop Corridor Growth Plan to meet traffic demands but minimizing impacts to developed properties
- Improve pedestrian mobility
- Improve safety for corridor users
- Identify improvements to the interchange as well as the $10^{\text {th }}$ Street and Cleveland Ave intersection



## Exit 9 (Benson Road)

## Crossroad Study Goals

- Reduce traffic congestion at NB on/off interchange ramp terminal
- Develop Corridor Growth Plan to meet traffic demands from development taking place east of I-229
- Improve pedestrian mobility
- Make recommendations to improve corridor intersections
- Develop interchange alternatives to meet future traffic demands



## Other Study Activities?

## - Noise Data Collection



## Other Study Activities?



## Project Website

## WWW.I229STUDY.COM



## Project Schedule

## TIMELINE OF EVENTS

 YEAR 2013April 2013 - Study Began


May / October 2013 - Data Collection \& Traffic Model Building October 30 ${ }^{\text {th }}, 2013$ - Public Open House \#1
November 2013 / March 2014 - Complete Traffic Assessment and Develop Alternatives for Improvements

## YEAR 2014

March / April 2014 - Public / Stakeholder Meetings
April / July 2014 - Refine Alternatives \& Produce Draft Reports
August 2014 - Public Meeting (Final)
October 2014 - Complete Study

## Next Steps

(1.) Take public comments on concerns you have regarding I-229 Study Areas

$\begin{aligned} & \text { sin } \\ & \underline{T M} \\ & \hline \end{aligned}$	1-229 Major Investment Corridor Study   PL 0100 (B7) 3616, PCN 044K
	We want to know whit you thivk: What we your cencems? What    doyen fresese? Pkese stheit your comineds befow Now $8^{2}, 2013 \mathrm{kc}$

(2.) Complete Traffic Assessment and begin to develop base alternatives to mitigate the capacity issues identified
(3.) Begin noise monitoring
 along corridor this fall

## Before You Leave Please...



## Room Layout




Thanks for Attending!
WWW.I229STUDY.COM
H2 非圆
HWBiresen

## APPENDIX - <br> Public Meetings \#2 - June $\mathbf{1 s T}^{\text {st }} \boldsymbol{\&} \mathbf{2}^{\text {ND }}, 2015$

Minnesota Avenue
June $1^{\text {st }}, 2015$

- Sign-In Sheets
- PowerPoint Slides
- Meeting Notes (See End of Public Meetings \#2 Appendix)
- Comments (See End of Public Meetings \#2 APPENDIX)

Note: actual attendance count
Sign In Sheet was 53 people (including 15 women)

Chati Cif of Sioux Fstiztsouth. Dakola Depahment of Transpotation

Projzet No: 207030

Masting Lacation: Síurr Falle Convertion Cenis

Figesw pritt claatf. Thark you.


Sign In Sheet



Profort Mo.: 2SNO3

Nevting Locatisn: Soux Fahi Conforlour Contan
Plase print cearly. Thank you.


## Sign In Sheet



Please print tieariy. Thank you.


GTY0F SiouyFils
PUBLICYORKS


Sign In Sheet





Project No.: 287tint




## Study Area Map

## 1-229 Corridor Study Solberg Avenue Overpass to 60th Street N. Overpass

## Meeting will focus on:

Exit 3-Minnesota Ave


## Study Advisory Partners



South Dakota Department of
Transportation (SDDOT)
South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan
Planning Organization (MPO)
Federal Highway
Administration (FHWA)

## Exit 3 (Minnesota Avenue) Crossroad Study Goals

- Reduce traffic congestion
- Evaluate interchange options
- Integrate plans for the $49^{\text {th }}$ Street Extension with the interchange options developed
- Improve pedestrian and bike access to the Big Sioux River Pathway
- Improve safety for corridor users
- Improve vehicle safety to Yankton Trail Park



## Minnesota Avenue Corridor Overview



## Conceptual Ideas for Minnesota Avenue

## What you will be able to see tonight:

- 13 Interchange Conceptual Options
- 4 Corridor Options
- Access Changes to Yankton Trail Park
- Conceptual Options to improve safety

Minnesota Avenue / I-229 Interchange Partial Clover Option


Propety whoos

Corsurcion 8 ROW Cost

Traffic Assessment

## Queues Delay Travel Time

NORTH


## LEGEND

$\square$ Interstate Ramp Construction Municipal Street Construction Raised Median Construction
$\qquad$ Bridge Construction - Existing ROW//Property Line
 Number of Traffic Lanes

Signalized Intersection

## Conceptual Ideas for Minnesota Avenue

What you will be
able to see
tonight:

- 13 Interchange Conceptual Options
- 4 Corridor Options
- Access Changes to Yankton Trail Park
- Conceptual Options to improve safety



## Next Steps for Minnesota Avenue

- Finalize Composite Comparison Matrix
- Traffic Assessment
- Environmental Screening
- ROW Impacts
- Overall Costs
- Public Involvement Support

- Complete additional Traffic Operations analysis on a reduced number of options based on the screening activities
- Develop Priority Phasing Plan for I-229 Corridor and Sub-Study Corridor
- Schedule and Conduct next public meeting


## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Ross Harris- HR Green, Inc. 515-657-5263 or rharris@hrgreen.com

Shannon Ausen - City of Sioux Falls 605-367-8607 or sausen@siouxfalls.org

Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us

$1-32$ Thanks for Attending!!!!!

## Interstate 229 Major Investment Study Exit 3 - Minnesota Avenue Sub-Study

10 ${ }^{\text {TH }}$ Street
JuNE ${ }^{\text {sT }}, 2015$

- Sign-In Sheets
- PowerPoint Slides
- Meeting Notes (See End of Public Meetings \#2 Appendix)
- Comments (See End of Public Meetings \#2 APPENDIX)

Note: actual attendance

## Sign In Sheet

Smaject Climb		
Projoct		Projust No.: 207038
Movieg Das		Heting Localion. Scux

count was 31 people (including 8 women)

Plosise pimildearly. Thank you.


Sign In Sheet

> Pojel
> unting Dase
> Prylert $\mathrm{Ha}: 207090$
> Mecting Locuion: Sioun Fäts Comertion Cemer

Figase pritt clanty, Thank you.


Minnsikarcinewn

## Sign In Sheet

Sabjuct		$10^{\text {h S }}$ Street Sub-Study
Climit		
Prowi		Project Mo: 200000
Munirg Cule	Moudsy. Wue fo 2015 TSOPM	Heetirg Locrion: Sion Fzils Coniontun Conlor

Pleged pritt clatrly. Thark you.



## Study Area Map

## 1-229 Corridor Study Solberg Avenue Overpass to 60th Street N. Overpass

## Meeting will focus on:

Exit 6-10 ${ }^{\text {h }}$ Street


## Study Advisory Partners



South Dakota Department of
Transportation (SDDOT)
South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan
Planning Organization (MPO)
Federal Highway
Administration (FHWA)

## Exit 6 ( $10^{\text {th }}$ Street) Crossroad Study Goals

- Reduce traffic congestion
- Develop Corridor Growth Plan to meet traffic demands but minimizing impacts to developed properties
- Improve pedestrian mobility
- Improve safety for corridor users
- Identify improvements to the interchange as well as the $10^{\text {th }}$ Street and Cleveland Ave intersection



## $10^{\text {th }}$ Street Corridor Overview



## 10 ${ }^{\text {th }}$ Street Corridor Overview



## $10^{\text {th }}$ Street Corridor Overview



## $10^{\text {th }}$ Street Corridor Overview



## $10^{\text {th }}$ Street Corridor Overview



## 10 th Street Corridor Overview



## $10^{\text {th }}$ Street Corridor Overview

Cleveland Avenue expansion recommended between $12^{\text {th }}$ Street and Rice Street in 2008 study.

$10^{\text {th }}$ Street \& Cleveland Avenue intersection projected to be over capacity by 2035.

## 10 ${ }^{\text {th }}$ Street Corridor Overview

Adding lanes to $10^{\text {th }}$ Street would be difficult due to adjacent businesses.

Bahnson Avenue

Numerous driveways along $10^{\text {th }}$ Street impacts traffic flow and increases potential for conflicts.

## $10^{\text {th }}$ Street Corridor Overview



## Conceptual Ideas for $10^{\text {th }}$ Street Corridor

## What you will be able to see tonight:

- 8 Interchange Conceptual Options
- 4 Corridor Options
- Median Changes or Driveway Closures to Improve Safety



## Conceptual Ideas for $10^{\text {th }}$ Street Corridor

## What you will be able to see tonight:

- 8 Interchange Conceptual Options
- 4 Corridor Options
- Median Changes or Driveway Closures to Improve Safety



## Next Steps for $10^{\text {th }}$ Street

- Finalize Composite Comparison Matrix
- Traffic Assessment
- Environmental Screening
- ROW Impacts
- Overall Costs
- Public Involvement Support

- Complete additional Traffic Operations analysis on a reduced number of options based on the screening activities
- Develop Priority Phasing Plan for I-229 Corridor and Sub-Study Corridor
- Schedule and Conduct next public meeting


## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Chris Malmberg - HDR Engineering, Inc. 402-399-4959 or chris.malmberg@hdrinc.com

Shannon Ausen - City of Sioux Falls 605-367-8607 or sausen@siouxfalls.org

Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us


## Interstate 229 Major Investment Study Exit $6-10^{\text {th }}$ Street Sub-Study

Thanks for Attending!!!!!
1-2

# Benson Road 

June 2 ${ }^{\text {ND }} \mathbf{2 0 1 5}$

- Sign-In Sheets
- PowerPoint Slides
- Meeting Notes (See End of Public Meetings \#2 Appendix)
- Comments (See End of Public Meetings \#2 APPENDIX)


## Sign In Sheet

Note: Actual attendance count was 20 people (including 6 women)

## Sign In Sheet




Sign In Sheet



## Study Area Map

## 1-229 Corridor Study Solberg Avenue Overpass to 60th Street N. Overpass

## Meeting will focus on: <br> Exit 9 - Benson Road



## Study Advisory Partners



South Dakota Department of
Transportation (SDDOT)
South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan
Planning Organization (MPO)
Federal Highway
Administration (FHWA)

## Exit 9 (Benson Road) Crossroad Study Goals

- Reduce traffic congestion at NB on/off interchange ramp terminal
- Develop Corridor Growth Plan to meet traffic demands from development taking place east of I-229
- Improve pedestrian mobility
- Make recommendations to improve corridor intersections
- Develop interchange alternatives to meet future traffic demands



## Benson Rd Corridor Overview

Legend   2035 No -Build Peak Hour Level of Service   A/B/ C   D   - E/F   - Signalized Intersection   U Unsignalized Intersection
Exit 9 (Benson Road) Study Area

## Benson Rd Corridor Overview



## Conceptual Ideas for Benson Road

## What you will be able to see tonight:

- 4 Interchange Conceptual Options
- 1 Corridor Option



## Conceptual Ideas for Benson Road

## What you will be able to see tonight:

- 4 Interchange Conceptual Options
- 1 Corridor Option


Trafic Assessment


## Next Steps for Benson Rd

- Finalize Composite Comparison Matrix
- Traffic Assessment
- Environmental Screening
- ROW Impacts
- Overall Costs
- Public Involvement Support

- Complete additional Traffic Operations analysis on a reduced number of options based on the screening activities
- Develop Priority Phasing Plan for I-229 Corridor and Sub-Study Corridor
- Schedule and Conduct next public meeting


## WWW.I229STUDY.COM

Home Centact

## I-229 MAJOR INVESTMENT CORRIDOR STUDY



Jpcoming Events
Get Imvolved


Organcation
Adbess

Phone
Enal

aneniguros
$\bullet$

Pain

Q Momenal Rutucted Muts on
Team will be using technology on this project that will allow us to distribute trafic in a manner that

Pubic Meeting / Open House \#1
ate: October 30th, 2013
(ime: $\quad 5: 30 \mathrm{PM}-7: 00 \mathrm{PM}$
Flace: Sioux Falls Convention Center
1101 N. Wesl Avenue
Siotur Falls, SD
(

## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

James Unruh - HDR Engineering, Inc. 605-977-7740 or james.unruh@hdrinc.com

Shannon Ausen - City of Sioux Falls 605-367-8607 or sausen@siouxfalls.org

Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us


## Interstate 229 Major Investment Study Exit 9 - Benson Rd Sub-Study

## Thanks for Attending!!!!!

$1->2$

I-229 MAINLINE
June 2 ${ }^{\text {ND }}, 2015$

- Sign-In Sheets
- PowerPoint Slides
- Meeting Notes (See End of Public Meetings \#2 Appendix)
- Comments (See End of Public Meetings \#2 APPENDIX)

Sign In Sheet


Prelact PL O1003733815P PONO4!K
Nesting tute luosdij, Une 2es, 2015 7.00 PM

Note: Actual Attendance count was 18 people (including 7 women)

Fleass prim clearly. Thank you.


## Sign In Sheet



Interstate 229 Major Investment Study Mainline I-229 Sub-Study 1

Informational Meeting June 2 ${ }^{\text {nd, }} 2015$ 7:00 pm to 8:30 pm -)

## Study Area Map

## 1-229 Corridor Study Solberg Avenue Overpass to 60th Street N. Overpass



## Study Advisory Partners



South Dakota Department of
Transportation (SDDOT)
South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan
Planning Organization (MPO)
Federal Highway
Administration (FHWA)

## I-229 Corridor Overview

## Legend

2035 No-Build Peak Hour Level of Service

- $\mathrm{A} / \mathrm{B} / \mathrm{C}$
- D
- E/F
- Signalized Intersection

4 Unsignalized Intersection $\square$ 1-229 Corridor Study Area

Note: LOS displayed is worst case between AM and PM peak hour

I-229 Major Investment Corridor Study I-229 Corridor Study Area

## I-229 Corridor Overview



## Conceptual Ideas for I-229 Mainline

## What you will be able to see tonight:

- Additional 3 ${ }^{\text {rd }}$ Lane between $26{ }^{\text {th }}$ Street and $10^{\text {th }}$ Street
- Modify design radius to allow for 65 mph



## Conceptual Ideas for Minnesota Avenue

## What you will be able to see tonight:

- 13 Interchange Conceptual Options
- 4 Corridor Options
- Access Changes to Yankton Trail Park
- Conceptual Options to improve safety

Minnesota Avenue / I-229 Interchange Partial Clover Option


Propety whoos

Corsurcion 8 ROW Cost

Traffic Assessment

## Queues Delay Travel Time

NORTH


## LEGEND

$\square$ Interstate Ramp Construction Municipal Street Construction Raised Median Construction
$\qquad$ Bridge Construction - Existing ROW//Property Line
 Number of Traffic Lanes

Signalized Intersection

## Conceptual Ideas for Cliff Avenue

## What you will be able to see tonight:

- 3 Interchange Conceptual Options

Cliff Avenue / I-229 Interchange


$\square$ Interstate Ramp Construction Municipal Street Construction Raised Median Construction
Bridge Construction Existing ROW//Property Line
 Number of Traffic Lanes
Signalized Intersection

## Conceptual Ideas for $10^{\text {th }}$ Street Corridor

## What you will be able to see tonight:

- 8 Interchange Conceptual Options
- 4 Corridor Options
- Median Changes or Driveway Closures to Improve Safety



## Conceptual Ideas for Rice Street Interchange

## What you will be able to see tonight:

- 1 Interchange Conceptual Options

Rice Street / - -229 Interchange Folded Diamond Improvements


Concopt Evelustion

Tratic	Property	Corsbuctos
Operations	mpocs	$8 R O W$ Cost

Corstuction 8 ROW COS

## Conceptual Ideas for Benson Road

## What you will be able to see tonight:

- 4 Interchange Conceptual Options
- 1 Corridor Option



## Next Steps for I-229

- Finalize Conceptual Options for all Sub-Studies
- Review Public Comments
- Complete additional Traffic Operations analysis on a reduced number of options based on the screening activities
- Develop Priority Phasing Plan for I-229 Corridor and Sub-Study Corridor
- Determine what "ITS" applications could improve the I229 corridor safety
- Schedule and Conduct next public meeting



## WWW.I229STUDY.COM

Home Centact

## I-229 MAJOR INVESTMENT CORRIDOR STUDY



Jpcoming Events
Get Imvolved


Organcation
Adbess

Phone
Enal

aneniguros
$\bullet$

Pain

Q Momenal Rutucted Muts on
Team will be using technology on this project that will allow us to distribute trafic in a manner that

Pubic Meeting / Open House \#1
ate: October 30th, 2013
(ime: $\quad 5: 30 \mathrm{PM}-7: 00 \mathrm{PM}$
Flace: Sioux Falls Convention Center
1101 N. Wesl Avenue
Siotur Falls, SD
(

## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Dave Meier - HDR Engineering, Inc. 402-399-1068 or dave.meier@hdrinc.com

Shannon Ausen - City of Sioux Falls 605-367-8607 or sausen@siouxfalls.org

Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us


## Interstate 229 Major Investment Study Mainline 1-229 Sub-Study 1

## Thanks for Attending!!!!!

$1->2$

## Meeting Notes

## Memo

Date:	Tuesday, June 02, 2015
Project:	1229 MIS Public Meeting Debriefing Summary
To:	Project Study Advisory Team (SAT)
From:	HDR
Subject:	Debriefing Summary / Meeting Comments

## Sub-Study 1-|-229 Corridor:

- Mixture of interchange types confuses drivers. Should apply consistency in upgrading existing interchanges.
- Re ITS - Whatever advance information that can be provided to drivers via ITS features is a good thing.
- Concern about pavement noise. The I-229 pavement seems to generate a lot of noise.


## Sub-Study 2 - Minnesota Ave:

- Prefer concepts with NO median on Minnesota north of 49 ${ }^{\text {th }}$ St.
- Don't see anything in the concepts shown that will improve operations on Minnesota outside the interchange area, particularly at $41^{\text {st }} \mathrm{St}$ and $57^{\text {th }}$ St.
- Need to look at the sources of traffic congestion beyond the study limits.
- There were no operations problems on Minnesota until the traffic signals were added at the I229 interchange ramps.
- Additional bicycle access across the I-229 corridor would be better if NOT on Minnesota.
- What about offsetting the school start time to avoid the morning peak period?
- Prefer interchange concepts without the traffic signals at the ramp terminals.
- Keep pedestrian and bike access separate from Minnesota Ave (off-alignment). Possibly aligned with Phillips or maybe with Duluth, Center or Spring. An overpass is preferred to an underpass.
- Improve bicycle/pedestrian access across I-229 on Minnesota and provide connection to Phillips corridor north of I-229.
- Like Minn-9 best. OK with right-turning traffic yield to pedestrians.
- Like the relocated Yankton Trails Park access concept with full access. Right-in/right-out for park access would not be good. Rose St connection to east as shown will not work - too steep a grade.
- Southbound ramp terminal intersection offset from $49^{\text {th }}$ St is better - worried about ramp to/from 49 thaffic speeding if the approaches are lined up.
- Post No Right Turn on Red for right turns onto of from ramp terminals to enhance safety of bike/pedestrian crossings.
- Significant population living northwest of $49^{\text {th }}$ and Duluth that would benefit from improved pedestrian access.
- Believe there are issues with the railroad ROW easements that place limitations on use.
- Railroad ROW is not wide enough for street width shown on the Minn-C2 concept.
- $49^{\text {th }}$ St should be perpendicular to Minnesota Ave. A horizontal curve to set up a 90-degree intersection would limit speeds on $49^{\text {th }}$ and the ramps. Also have concern for angle of turn for trucks from eastbound $49^{\text {th }}$ to southbound Minnesota.
- Like Minn-9 concept best except for park entrance right-in/out. Relocate the park access, but connect it to the existing trail parking lot to minimize impacts on forested area of park along river. Use the pavement from the existing drive from Minnesota for replacement trail parking.
- Relocated park access impacts Frisbee's drive.
- Need to provide pedestrian/bicycle connectivity between Minnesota Ave, Yankton Trail Park and Tomar Park.
- One person suggested studying a roundabout at Phillips with the $49^{\text {th }}$ extension east alternative.
- One person commented that they preferred the loop ramps that remove left turns from Minnesota.


## Sub-Study 3-10 ${ }^{\text {th }}$ Street:

- Potential noise issues with split diamond concepts due to added one way ramp connectors.


## Sub-Study 4 - Benson Road:

- Need only one set of ramps (half interchange) at $60^{\text {th }}$ St N .
- SPUI interchange at $10^{\text {th }}$ St and elsewhere have worked well. Is it a potential concept at Benson Rd?
- During peak periods traffic on Benson Rd typically lets traffic from Potsdam onto Benson Rd.
- If concrete casting plant (Gage Bros. Concrete) relocates to the Benson Rd area, beams up to 120 feet long may be transported onto I-229 at the Benson Rd interchange. Plant relocation could involve up to 60 trailers/day for all products shipped and materials received. Intrigued by DDI concept.
- Concern that none of concepts shown have features to address strong eastbound to southbound right turns onto l-229 entrance ramp. Dual right turn with two-lane ramp for some distance may be needed.
- Prefer that Benson Rd interchange get big capacity increase and do nothing at $60^{\text {th }} \mathrm{St} \mathrm{N}$. $60^{\text {th }} \mathrm{St}$ N has good I-229 trail crossing potential if there are no interchange ramps.
- $54^{\text {th }} \mathrm{St} \mathrm{N}$ would be a good new l-229 trail crossing corridor.
- Minimal pedestrian use is expected along the Benson Road corridor due to the commercial and industrial land use in the area.

Comments

## Comment 01

Sioux Falls, SD 57108-2102
Benson: umpire flow EB Ba sen $\rightarrow 5 B 229$


## Comment 02



## Comment 03

\#lowe St Corridor
I think there needs to be more attention paid providing safe, convenient, and aarssinge access for bicyok, pedestrian, and public transportation users. More traffic lanes does not produce less congestion. There weeds to be a more profound design that accommodates nen-motsized transportation many wars. I-229 is a major barrier that has been identified as Name: troublesome for getting peopforagse who walk, bike, or ride the bus, Phone I really like the conecemail:of the diverging diamond on 10 the 年, as well as the service rand access that would comet lott $\dot{\text { ib te st }}$ st I belies that the inter that tote i $6^{k}$ con be parallel urban arterials that provide sate, cmanvient and timely travel torandf from downtown in prows is great in terms of east-west travel.

## Comment 04

6300 S. Old Village Place, Suite 100
Sioux Falls, SD 57108-2102
Fax: 605-977-7747
Next to meluele other motes of Trent in the evoluctiess)/



## Comment 05

I think there needs to be a major consideration of the impacts to the entire Minnesota Ave. corridor to dovertown/airport. Need to consider imports to the ability to safely and conveniently bike, walk, and riding the bus. While a think bicycle/pedestrion access across $1-229$ should be first-and-firemost, publi-access to public transportation needs, to be seriously considered in (osmose: an area that dooself a/locdy have fixed route service Phone: evitable to them otherwise they are left with a singular option of vetiouls single occupant vehicle trips, which I do not believe that any of the concepts address'lessening the impacts of trafte future traffic congestion a. There needs to be more of a focus on increasing bikelped/transit access.

## I-229 Major Investment Corridor Study PL 0100(87) 3616P, PCN 044K

## Comment 06

RE: 1-229 Corridor Study - Minnesota Ave Interchange
As a volunteer member of the American Heart Association Advocacy Committee I strongly encourage this $1-229$ corridor study consider all roadway users (motorized and not) equally as it seeks to improve the way people move in and around the corridor, hterstates within cities have repeatedly proven to be significant barriers to the free movement of people. This is as true in Sioux Falls as it is in cities all over the world.





 pathways of desire to traffic dense Western Ave, Minnesota Ave and Cliff Ave presents significant challenges to users. A person need only navigate these three interchanges a few times, counting the conflicts that present themselves before realizing these spaces were not meant for users who choose to power themselves.

Please rework the Minnesota Ave interchange seeking to give an equal level of safety to all roadway users, motorized and not. Use it then as a model throughout the city.

## Comment 07



## Comment 08

Comments I would like to see some sort of bike/pedestrian bridge over/under I-229 near the Yankton Trails Park area. Getting from south Sioux Falls via bicycle is terribly difficult. Thank you

## Comment 09

Please include me in any future planning around 10th Street. 1 am a commercial property owner Comments around 10th and Cleveland, so 1 am particularly interested in any future plans. I appreciate your making this public and inclusive.

## Comment 10

Something that I feel needs to be addressed concerning the 1-229 corridor is the unsafe traffic conditions at Cliff Avenue on the north side of 1-229. The current traffic light set-up forces northbound drivers to risk their lives to get on westbound 1-229. The main problem for this is the amount of traffic going southbound, and the timing of the lights. The raffic heading south through the intersection is going downhill and generally driving rather faster than the speed limit. The traffic coming of 1-229 and turning south on Cliff Avenue is usually going pretty fast too, as the green light is short, and no one wants to wait. Additionally, easibound traffic on 41 st street turning south on Cliff Avenue faces only a yield sign. Knowing that the southbound traffic is heavy and fast when southbound Cliff Avenue or westbound 41st Street have a green light, the eastbound 41st Street traffic turning south has a brief window to gun it and head south on Cliff Avenue. Sitting in the northbound Cliff Avenue turning lane, waiting to turn west onto the westbound I-229 on ramp becomes a crap-shoot. It's unsafe to turn across the two lanes of southbound Cliff Avenue when Cliff Avenue has a south green light, or when westbound traffic off I-229 has a green light, or when both those lanes have a red light, and the southbound traffic coming off 41 st Street speeds south during the brief window of time when only northbound Cliff Avenue has the green light. When it's busy, especially before and after school, and after 5:00, there is no safe time to turn left from Cliff Avenue onto the I-229 on-ramp. Consequently, every car taking that route has to gun it, and hope the southbound traffic hits the brakes. This situation is clearly unsafe now. As raffic grows, it will get worse. A simple fix, for now, would be to time the lights a little different, or at least a little longer, and add a red light in place of the yield controlling southbound Cliff Avenue traffic from 41 st Street. When all southbound and westbound traffic has a red light, those cars headed for southbound $1-229$ would have a safe, clear path. Time the light long enough to allow 6 cars to get through. Another, simple way to improve the traffic situation would be to widen the lane where iraffic turns south onto Cliff Avenue from 41 st Street. If that lane were twice as wide, 41 st Street traffic trying to get on the on-ramp for I-229 south could do so without having to pull into the right lane of southbound Cliff Avenue. That lane should stil have the traffic light in place of the yield sign. It wouldn't take much of a traffic study to see the issues at that intersection. Spending a half hour observing at $7: 30 \mathrm{a} . \mathrm{m}$. on a school day would tell you all you need to know.

## Comment 11

Thanks for the reply. To be honest, I poked around a lot in the site I sent the message from, but did not see the part you link here. It looks interesting and it looks like it's designed to alleviate the exact problem I wrote about. Some questions- Would there be another lane added where the loop comes onto SB I-229, so that l'm not trying to merge into 65 mph (ha ha- wish they were going that slow) traffic while accelerating up a hill on a curve? What would be the purpose of the retaining walls shown between I-229 and the existing SB on-ramp? Is there a time frame yet on when this work will be started?

## APPENDIX -

Cliff Avenue and Rice Street Public Meetings June 22 ${ }^{\text {ND }}, 2016$

Rice Street
June 22 ${ }^{\text {ND }}, 2016$

- Meeting Notes
- Sign-In Sheets
- Comments
- PowerPoint Slides


## Meeting Minutes

```
 Project: I-229 Major Investment Corridor Study, PL 0100(87) 3616P, PCN 044K
 Subject: Stakeholder Meeting - Sub-study 5 - Rice Street Exit 7
 Date: Wednesday, June 22, }201
 Location: Sioux Falls Convention Center Conference Room 6
Attendees: See Attached Sign In Sheet - 8 Participants
```


## Comments \& responses noted:

1. Trucking firm on North side Rice, east of I-229 (Kunkel Truck Lines)

- Concern for Eastbound truck ingress to property.
- What is the purpose of the proposed median? Response: Median is the preferred treatment for arterials carrying more than 20,000 veh/day (City)
- Are the proposed corridor improvements similar to W $12^{\text {th }}$ Street near I-29? Response: Yes (City)
- Will the railroad have one track or two? Response: BNSF has not indicated how many tracks there may be in the future. They have not ruled out the potential for expansion.
- Business owns both existing drives on the north side of Rice St. An adjacent business to the east (Eastgate Towing) also has access to Rice St via the eastern of the two drives.
- The proposed backage road would require 15-20 feet of embankment.
- Existing security at the drives is provided by security cameras only. The business intends to add gates. Proposed widening on Rice St will make it more difficult for the business to position the gates.

2. Business southeast corner of Bahnson Ave (Myrl \& Roy's Paving)

- Recommend that project planners expect more railroad traffic.
- Recommend consideration of eastbound in-bound trucks queueing when trains are in the crossing. Response: It is expected that the number of unit trains/day will remain about the same but local trains could increase to 3-4 per day (City).
- The Cleveland realignment option is a step backward because it inhibits direct access to I-229.

3. Gravel Company - East side of Cleveland

- When the railroad crossing is blocked, there will be no way out of our business if a median is built on Cleveland.

4. Proposed improvements on Rice St will increase speeds on Rice and create more problems with slow turning trucks. Response: Satisfying both commuter and industrial traffic is a challenge.
5. Between 4:00-4:30 pm, trucks waiting for a gap in Rice St traffic to turn out block the railroad crossing.
6. A railroad grade separation is needed.
7. What is the timeline for construction of Rice St improvements? Response: the I-229 study will include recommendations to prioritize improvements over a time span of more than 20 years. Widening Cleveland Ave to a 5-lane roadway is anticipated to be a near term project (City).
8. Eastbound right turn lane has been considered to allow westbound left lane to be added, but it is needed to hold traffic when railroad crossing is blocked.
9. Why is that more important than queuing traffic waiting for left turn traffic in the morning?
10. The railroad track should be realigned south to its original alignment farther south of Rice St.
11. The mine pit south of Rice St is now used mostly for recycling and has an indefinite remaining life.
12. Not opposed to realignment of Cleveland Ave if it can be shifted farther west or south toward the residential development.
13. When will SD-100 be constructed to Rice Street? Response: In about two years.
14. Why do the I-229 bridges need to be redone before improvements along Rice St?
15. On Concept Rice-5, would a roundabout be located where the ramps intersect Rice St? Response: A signalized intersection similar to the one at I-229 and $10^{\text {th }}$ St would be located at the ramp terminals.
16. What is the benefit of the proposed median? Response: Vehicle crash mitigation and reduction of turning movement conflicts.
17. Have studies been conducted regarding the safety of U-turns? Response: $57^{\text {th }} \&$ Southeastern project has been the source of some complaints about u-turns. $12^{\text {th }}$ Street is working OK. A 30\% reduction in crashes has been determined by analysis of previous median construction projects (City).
18. Senior driver comment - Medians cause confusion because drivers often cannot exit an adjacent property the same way they entered it.
19. Do not see a lot of semi-trailer trucks on Rice St west of I-229.
20. Business West Side of Cleveland South of Rice

- Have been operating since 1991. Have only 70 employees, who may go on-site to service customers.
- There are truck operations in and out of the site.
- The site contains 50 storage spaces for customer RV's and campers storage.
- Customers like that the storage spaces are close to I-229 access ramps.

Sign In Sheet

Cleen Cty of Sloux FalsiSouh Dubets Degament of Tranaporition

Projet PL G1sC/37) SersP, PCN OuK
Ueeting Cow Wedresdyy, Jone Z2, 2016 6:00 PM

Propet Na: 200000
Mopting Locabienc Sicua Falls Comertion Censer

Please peint clearly. Thank you.


Sign In Sheet

Clieve Cay of Siccu Faly/Pouh Ouksts Oegarnent of Trareponaton
Projest
P. 0150(57) 3615P, PCN 044K

Project No: 200000
Meeting Dax
Wedresdry, June 22,2016 5:00 PM
Mevting Locstionc Sicua Fols Cowerton Censer
Plesse print clearly. Thank you.


Sign In Sheet
Setpel $1.22 a$ Mipor Invesmant Coridor Sudy - Putbe Meting lor Rot Seent Sub-Szajy
Client Cy of Sioux FallvGosh Davcea Duparment of Trexpertsion
Prower PL O10C(B7) Sbitp, PCN OUK
Pnoject No: 207080
Meving Date Wechesfry, oure 22. 2016500 FlN
Meeting Lacaion: Sioparifly Convertion Certes
Plesse prirt clearly. Thank you.


## Comment Card

I-229 Major Investment Corridor Study - Rice Street Sub-Study
Public Open House
PL 0100(87) 3616P, PCN 044K
June 22, 2016

Comments
 Redo drainage on Jessica - Remove meridian Rice ST- 1 TRuckINg Firm Ratherlarconviencep For Trips NORTh BOWND. SOUTh BOUND is" DO-ABle" BACK Access Accessible To I-229?

Name:
Dean Delashmutt Address: 1207 N Violet PL

Phone: 605 vale 1108
For your comments to be considered, please return by July 7, 2016.
Comments can also be e-mailed to: sausen@siouxfalls.org


# Interstate 229 Major Investment Study Exit 7 - Rice Street 

Ю)

Public Meeting<br>June 22nd 2016 5:00 pm to 6:30 pm

## Study Area Map

## 1-229 Corridor Study

Solberg Avenue Overpass to

## 60th Street N. Overpass

Additional Studies
Exit 3 - Minnesota Ave
Exit 6-10 ${ }^{\text {th }}$ Street
Exit 9-Benson Road
Added Exit 4-Cliff Avenue Added Exit 7 - Rice Street


## Study Advisory Partners



South Dakota Department of
Transportation (SDDOT)
South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan
Planning Organization (MPO)
Federal Highway
Administration (FHWA)

## Exit 7 (Rice Street) Crossroad Study Goals

- Reduce traffic congestion
- Provide and Interchange that will meet the future capacity requirements
- Improve pedestrian mobility
- Improve safety for corridor users





Interstate/Ramp Construction Muricipal Street Construction Raised Median Construction Existing Bridge (Use It-Ptace) Bridge Construction Retaining Wal Existing ROWWProperty Line Existing Railroad
At Grade Ralroad Crossing
Signalized Intersection
RoublAcosess Closure
Number of Traffic Lanes

$\qquad$


Added lane on NB exit ramp


Relocated and
upgraded
railroad crossing







## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Dave Meier - HDR Engineering, Inc. 402-399-1068 or Dave.Meier@hdrinc.com

Shannon Ausen - City of Sioux Falls 605-367-8607 or sausen@siouxfalls.org

Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us

## Interstate 229 Major Investment Study Exit 7 - Rice Street

## Thanks for Attending!!!!!

## ト?

# Cliff Avenue June 22 ${ }^{\text {ND }}, 2016$ 

- Meeting Notes
- Sign-In Sheets
- Comments
- PowerPoint Slides


## Meeting Minutes

```
 Project: I-229 Major Investment Corridor Study, PL 0100(87) 3616P, PCN 044K
 Subject: Stakeholder Meeting and Public Meeting-Sub-study 6 - Cliff Avenue Exit 4
 Date: Wednesday, June 22, }201
 Location: Sioux Falls Convention Center Conference Room 6
Attendees: See Attached Sign In Sheet - 8 Participants
```

Follow-up discussion items included:

1. What about pedestrian access along Cliff Ave? Response: Providing pedestrian access along both sides of Cliff Ave is being proposed.
2. For Concept Cliff-4, why are property impacts shown described as "neutral"? The impacts look severe along Pam Rd.
3. Resident on Pam Rd - Proposed concepts will add noise to neighborhood.
4. Lincoln High School - Like Concepts Cliff-4 and Cliff-8 that include the $41^{\text {st }}$ St relocation aligned with an entrance to the high school and signalized access to Cliff Ave. About half of the high school related traffic is to and from the south.
5. South $10^{\text {th }} / 38^{\text {th }}$ St Resident - Parents can't get in to Lincoln High School to pick up children. They park in the neighborhood west of Cliff Ave and the students cross Cliff Ave at random locations.
6. Lincoln High School - Adding a median on Cliff Ave will force school traffic into the school driveway loop. The school bus stop location was moved to $38^{\text {th }} \& S 10^{\text {th }}$ from its previous location on Cliff Ave in recent years to help direct students to the designated pedestrian crossing on Cliff Ave.
7. Lincoln High School was asked if the existing Cliff Ave pedestrian crossing functions acceptably. The high school responded that some confusion has been noted. Operations are better in the morning peak period than the afternoon peak. It was noted that nearby residents hear vehicle screeching tires at night when the pedestrian crossing is activated. A comment was made that relocating the crossing to $38^{\text {th }}$ St would help. The City noted that Lincoln High School and the City did discuss locating the crossing at the $38^{\text {th }}$ St intersection before the existing midblock location was selected.
8. Will widening Cliff Ave bring more traffic? Response: Traffic volumes on Cliff Ave are approximately 15,000 vehicles/day north of I-229 and about 20,000 vehicles/day between the I-229 ramp terminal intersections. Traffic volumes have been consistent over the last five years.
9. Will it be possible to reduce truck traffic on Cliff Ave? Response: Cliff Ave is a designated truck route and that designation is unlikely to be removed.
10. What is the timeline for completion of the I-229 study? Response: Stakeholder and public comments will be reviewed followed by screening and some refinement of the concepts. A priority plan for potential projects will be the final study step. The study should wrap up in late 2016.
11. Lincoln High School - The high school prefers Concept Cliff-4, but would prefer that the proposed $41^{\text {st }}$ St realignment be modified to stay south of the high school property line.
12. A right turn lane for southbound traffic at the park entrance south of the Cliff Ave bridge over the Big Sioux River is needed.
13. Although Cliff Ave has two southbound through lanes to the East $49^{\text {th }}$ St intersection, drivers treat Cliff Ave as single lane going southbound up the hill toward East 49 ${ }^{\text {th }}$. Response: Plans exist to extend a four lane section on Cliff Ave south of East $49^{\text {th }}$ St.
14. Who owns the old railroad right of way? Response: The City owns the former railroad property.
15. Why is the connection from Pam Rd to South $10^{\text {th }}$ Ave shown on Concept Cliff-6? Response: The purpose of the proposed connection is local street continuity and access to properties unaffected by the proposed realignment of East $41^{\text {st }} \mathrm{St}$.
16. Consider using the old railroad right of way for street improvements instead of widening on $41^{\text {st }}$ St. Response: Widening on $41^{\text {st }}$ St is proposed to add lane capacity near Cliff Ave because the existing right of way along $41^{\text {st }} \mathrm{St}$ is wider than the former railroad right of way.

Sign In Sheet

Olest Ceycl Sour FilvScuen Dubga Depertrect of Transpontrion
Prower PLOTOOKT 36tte. PCN Osex
Meting Date Wechosiag, June 22, 2016 7.00 F1N
Prolect Mo: 2070 co
Meeting Lecation: Sioux Fally Corumion Certe:
Please primt clearly. Thank yoz.


Sign In Sheet
Sutwer 1.229 Myor Invesment Corridor Sudy - Putle Neeting lor CiE Auman Sub-Sudy
Clien Cify of Sous Falos Sout Dabota Deparment al Tamiportiof
Projed PL O1cC(BT) S61EP. FCN 044 K
Meeling Date Wedresdxy, Juse 22, 2016 7:50 PM
Project Na: 200000
Meeting Locabienc Sicux Falls Conversion Certor
Plesse prist clearly. Thank you.


## Comment Card

## 1-229 Major Investment Corridor Study - Cliff Avenue Sub-Study <br> Public Open House <br> PL 0100(87) 3616P, PCN 044K <br> June 22, 2016



For your comments to be considered, please return by July 7, 2016.
Comments can also be e-mailed to: sausen@siouxfalls.org

## Comment Card

## 1-229 Major Investment Corridor Study - Cliff Avenue Sub-Study <br> Public Open House <br> PL 0100(87) 3616P, PCN 044K June 22, 2016

```
Comments:
```

$\qquad$

``` Drawn Furthea awoy from linioinh.s The Sigiva at the Sohol is A vary good ioen
```



```
Name: Dean Delasiamutt Address: 1207 N Voletpl 50103
Phone: 6054961108
E -mail:
```

For your comments to be considered, please return by July 7, 2016.
Comments can also be e-mailed to: sausen@siouxtalls.org


## Study Area Map

## 1-229 Corridor Study

Solberg Avenue Overpass to

## 60th Street N. Overpass

Additional Studies
Exit 3 - Minnesota Ave
Exit 6-10 ${ }^{\text {th }}$ Street
Exit 9-Benson Road
Added Exit 4-Cliff Avenue Added Exit 7 - Rice Street


## Study Advisory Partners



South Dakota Department of
Transportation (SDDOT)
South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan
Planning Organization (MPO)
Federal Highway
Administration (FHWA)

## Exit 4 (Cliff Avenue) Sub - Study Goals

- Reduce traffic congestion
- Develop new geometrics to improve capacity at $41^{\text {st }}$ Street and Interchange
- Improve pedestrian mobility
- Improve safety for corridor users









LEGEND
InterstasomRamp Construction Munioipal Streat Construction Raised Modian Constuction Existing Oridge (Use In-Place) Bridge Construction Retaining Well Existing ROWU Property Uine Existing ROWMProperty

Signalzed insersection Number of Tratfc Lanes

E 41 ${ }^{\text {st }}$ St. widened and shifted north to increase separation from interchange

## - <br> Added and <br> extended turn lanes

on Cliff Ave

13

I-229 interchange reconstructed as Tight Diamond for added capacity

## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Brian Ray- HDR Engineering, Inc. 402-548-5066 or Brian.Ray@hdrinc.com

Shannon Ausen - City of Sioux Falls 605-367-8607 or sausen@siouxfalls.org

Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us


# Interstate 229 Major Investment Study Exit 4 - Cliff Avenue 

Thanks for Attending!!!!!

- 32

Public Meeting \#3 - December 6 ${ }^{\text {h }}, 2016$

- Sign-In Sheets
- Comments
- PowerPoint Slides
- Meeting Notes (See Stakeholder Meetings \#2 Appendix)

Sign In Sheet
Solijet $1-229$ Major invermint Conider \$woy - Putic Meetng
Cliest Cty ot Sloux Falla Soch Daxida Deportrent ol Timsporation
Project PL OCOC(ET) 3616P. PCN OL4K
Prolect Na: 23N20

Mevorg Location Soax Fals Comerton Cents
Please pritt clearly. Thank yos.


Sign In Sheet
Swhert 1228 Najor ITmatrent Comidor Stafy - Pubic Mowirg

Propect 'FL0100,87) 3516P, PCN 044 K
Project No: 200000
Hevting Dute Tiesdir, Decerter 85, 2016 ace PM
Meting Location: Souxfall Conminice Certe
Plesse print clearly. Thank ysu.


Sign In Sheet
Babject 1289 Major investrent Condar Sudy - Publo Neetng

Projet PL G100/37) 3515P, PCN 044 K
Project Na: 200ncoso

Moveling Lecation: Soux Fall Coeventon Coriner
Pease print clearly. Thank you,


I-229 Major Investment Corridor Study
PL 0100 (87) 3616P, PCN 044K

CITY OF SIOUX FALLS PUBLIC WORKS Providing a Better Quality of Life for Would

WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresee? Please submit your comments before December 22, 2016 to:
Mail: HDR Engineering, Inc. ATTN: Jason Kjenstad 6300 S. Old Village Place, Suite 100

E-mail: Jason.Kjenstad@hdrinc.com Sioux Falls, SD 57108+2102

Fax: 605-977-7747
Very much like improved pedestrianibike access on all options.
If the 3 current options, Cliff I 7 have less property owner impact (good). (if 1 appears to have less impact on affordable housing. Cliff 6 would feed Lincoln H.S. traffic right on to 41甹-probably not a good idea, Intersection of Cliff +41 II at LHS would coseshe a real mess 7:30-9Am $+3-4: 15$ pmCcurrent LHS busiest times, Name: Wendy Butler-Boyesen Address: 1104 E, Pam Rd, it's allocate not
$\qquad$


CITY OF SIOUX FALLS PUBLIC WORKS Providing a Better Quality of Ute for Yowl

I-229 Major Investment Corridor Study
PL 0100 (87) 3616P, PCN 044K

WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresee? Please submit your comments before December 22, 2016 to:
Mail: HDR Engineering, Inc. ATTN: Jason Kjenstad 6300 S. Old Village Place, Suite 100

E-mail: Jason.Kjenstad@hdrinc.com Sioux Falls, SD 57108-2102

Website very useful $\rightarrow$ advertise on marquee sign please!
Thanks for making considerations for cyclists!
$\qquad$
$\qquad$
$\qquad$
Phone: $\qquad$ 951.5391

Address: 1205 Parkview blvd, Brandon Email: $\qquad$

CITY OF SIOUX FALLS PUBLIC WORKS Providing a Better Quality of Life for Pout

WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresee? Please submit your comments before December 22, 2016 to:

Mail: HDR Engineering, Inc.
ATTN: Jason Kjenstad
6300 S. Old Village Place, Suite 100
Sioux Falls, SD 57108-2102

E-mail: Jason.Kjenstad@hdrinc.com
Fax: 605-977-7747

$\qquad$
$\qquad$



CITY OF SIOUX FALLS PUBLIC WORKS Providing a Peter Quality of Life for Yowl

1-229 Major Investment Corridor Study
PL 0100 (87) 3616P, PCN 044K
WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresee? Please submit your comments before December 22, 2016 to:

Mail: $H D R$ Engineering, Inc.
ATTN: Jason Kjenstad
6300 S. Old Village Place, Suite 100
Sioux Falls, SD 57108-2102

E-mail: Jason Kjenstad@hdrinc.com
Fax: 605-977-7747


## I-229 Major Investment Corridor Study

PL 0100 (87) 3616P, PCN 044K

CITY OF SIOUX FALLS PUBLIC WORKS Proving a Benet Quality of UTe for You

We Want to know what you think! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresee? Please submit your comments before December 22, 2016 to:

Mail:
HDR Engineering, Inc.
ATTN: Jason Kjenstad
6300 S. Old Village Place. Suite 100
E-mail: Jason.Kjenstad@hdrinc.com

Sioux Falls, SD 57108-2102
Fax: 005-977-7747

Do Not Install a Raises Media on Benson to Euminate LEFT Turns From the South



CITY OF SIOUX FALLS PUBLIC WORKS Providing a ketene Coaly of Life for You

Mail: HDR Engineering, Inc. ATTN: Jason Kjenstad 6300 S. Old Village Place, Suite 100 Sioux Falls, SD 57108-2102

## I-229 Major Investment Corridor Study <br> PL 0100 (87) 3616P, PCN 044K

WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresee? Please submit your comments before December 22, 2016 to:

## Email: Jason.Kjenstad@hdrinc.com

Fax: 605-977-7747

(optional)
Name:


Phone: $\qquad$
Address:



## Kjenstad, Jason

From:
Sent:
To:
Cc:
Subject:

Gary Busselman [gary@garybuss.com](mailto:gary@garybuss.com)
Wednesday, December 07, 2016 5:27 PM
Kjenstad, Jason
Nancy Busselman
I-229 E 10th St Exit COMMENT

I-229 Major Investment Corridor Study
HDR Engineering Inc
ATT: Jason Kjenstad
6300 S. Old Village Place, Suite 100
Sioux Falls SD 57108-2102

Jason.Kjenstad@hdrinc.com
Fax: 605-977-7747
December 7, 2016

RE: 2700 \& 2704 E 10th St
Loss of either of the two approaches or the front parking/pass through will amount to a virtual condemnation and will likely result in an inverse condemnation action. Either buy my property or don't damage it so I can't use it as is or sell it to somebody else.

Gary Busselman
STEM LLC
7201 E Madison St
Sioux Falls, SD 57110
605-334-5692
gary@garybuss.com

WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you'foresee? Please submit your comments before December 22, 2016 to:

HDR Engineering, Inc.
ATTN: Jason Kjenstad
6300 S. Old Village Place, Suite 100
Sioux Falls, SD 57108-2102

E-mail: Jason.Kjenstad@hdrinc.com
Fax: 605-977-7747
I have a temat in 3508 S. Minesota Ale.
Access off of Minesofa Are + being able po tun
onto 43 rld St. when healing S. on Minesota the to
acres the business is important to the cert+bilisy
f these bushesses and customer access.
$\qquad$ Address: $80 / 6$. 38 the $S$ t. $55,505710 \mathrm{~T}$
Email: juind+68egmail.con

## I-229 Major Investment Corridor Study

PL 0100 (87) 3616P, PCN 044K

WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresee? Please submit your comments before December 22, 2016 to:

CITY OF SIOUX FALLS
PUBLIC WORKS
Providing a fetes Quality of Life for You

E-mail: Jason.Kjenstad@hdrinc.com
Fax: 605-977-7747

No Build-
Keep 4 zed Street open to Minnesota tore for $N+$ S Bound traffic No median
(optional) Tame: fain
Phone: $36(-8+100$

## Address:

Email:


CITY OF SIOUX FALLS
PUBLIC WORKS

## I-229 Major Investment Corridor Study <br> PL 0100 (87) 3616P, PCN 044K

WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresee? Please submit your comments before December 22, 2016 to:

Mail: HDR Engineering, Inc.
ATTN: Jason Kjenstad
6300 S. Old Village Place, Suite 100
E-mail: Jason.Kjenstad@hdrinc.com

Sioux Falls, SD 57108-2102
Fax: 605-977-7747

No Build
Keep $43^{e d}$ Street open to Minnesota Are fore $N+5$ bound Traffic No Median.
(optional)
Name:


Phone:


Address:
Email: theinmail@gmail.con

## 1-229 Major Investment Corridor Study Ww W, i 229 study. com PL 0100 (87) 3616P, PCN 044K

CITY OF SIOUX FALLS PUBLIC WORKS Providing a tecter Cuility of Life for Youl

WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresce? Please submit your comments before December 22, 2016 to:

Mail: HDR Engineering, Inc.
ATTN: Jason Kjenstad
6300 S. Old Village Place, Suite 100
E-mail: Jason.Kjenstad@hdrinc.com

Sioux Falls, SD 57108-2102
Fax: 605-977-7747

December 7, 2016

RE: 2700 \& 2704 E 10th St
Loss of either of the two approaches or the front parking/pass through will amount to a virtual condemnation and will likely result in an inverse condemnation action. Either buy my property or don't damage it so I can't use it as is or sell it to somebody else.
Name: $\qquad$ Busselman
Phone: $\qquad$ Email: $\qquad$

7201 E Madison St Sioux Falls, SD 57110 $\qquad$
605-334-5692
gary@garybuss.com

I-229 Major Investment Corridor Study
PL 0100 (87) 3616P, PCN 044K

CITY OF SIOUX FALLS PUBLIC WORKS Providing a better Quality of Le for You

WE WANT TO KNOW WHAT YOU THINK! What are your concerns? What issues does the study team need to overcome with this project? What problems do you foresee? Please submit your comments before December 22, 2016 to:

Mail: HDR Engineering, Inc.

E-mail: JasonKjenstad@hdrinc.com
Fax: 605-977-7747
Fax: 00519771

6300 S. Old Village Place, Suite 100
Sioux Falls, SD 57108-2102


Mary ${ }^{2}$ Montoya 4809:S Twin Ridge Rd Sioux Falls, SD 57108

- Address: $\qquad$
Email: mary. montoya@ sion midco.net


## Kjenstad, Jason

From:	Robert Reitz [tooferguy007@gmail.com](mailto:tooferguy007@gmail.com)
Sent:	Monday, December 19, 20169:39 AM
To:	Tom Hein; Kjenstad, Jason
Cc:	Shally Rogen; Jeff R. Mindt; Eric \& Mary Stormo; Brian Sather
Subject:	Re: 1229 and Minnesota Layouts

Please consider access to Minnesota Crossing \{3508 S Minnesota Ave\} for southbound traffic on Minnesota Ave by narrowing the island to permit a left turn lane for entry to the middle access on the above mentioned property. Otherwise we strongly suggest NO BUILD!

On Tue, Dec 13, 2016 at 8:25 AM, Tom Hein [theinmail@gmail.com](mailto:theinmail@gmail.com) wrote:
Please review DOT options below for destroying our property and access. Be sure to complete the I-229 Major Investment Corridor Study 'We want to know what you think" card and return it to HDR Engineering or Jason.Kjenstad@hdrinc.com with your thoughts. I highly encourage to have a "No Build" option which leaves our access points and does not provide a median to prevent our south bound customers from getting into our property.
Please reply.
Thanks,
Tom
---------- Forwarded message $\qquad$
From: Kjenstad, Jason [Jason.Kjenstad@hdrinc.com](mailto:Jason.Kjenstad@hdrinc.com)
Date: Fri, Dec 9, 2016 at 6:04 AM
Subject: Fwd: I229 and Minnesota Layouts
To: Thomas Hein [theinmail@gmail.com](mailto:theinmail@gmail.com)

## FYI Tom

Jason Kjenstad 6053606595
Begin forwarded message:
From: "Kjenstad, Jason" [Jason.Kjenstad@hdrinc.com](mailto:Jason.Kjenstad@hdrinc.com)
To: "imbliss628@aol.com" [jmbliss628@aol.com](mailto:jmbliss628@aol.com)
Cc: "Kjenstad, Jason" [Jason.Kjenstad@hdrinc.com](mailto:Jason.Kjenstad@hdrinc.com)
Subject: I229 and Minnesota Layouts
FYI Rich

Jason Kjenstad, PE, LSIT
Vice President - Dakota's \& Wyoming Transportation Operations Manager

## HDR

6300 South Old Vlizize Place
Suite 100

I-229 Major Investment Corridor Study
HDR Engineering Inc
ATT: Jason Kjenstad
6300 S. Old Village Place, Suite 100
Sioux Falls SD 57108-2102
Jason.Kjenstad@hdrinc.com
Fax: 605-977-7747
December 7, 2016

RE: 2700 \& 2704 E 10th St
Loss of either of the two approaches or the front parking/pass through will amount to a virtual condemnation and will likely result in an inverse condemnation action. Either buy my property or don't damage it so 1 can't use it as is or sell it to somebody else.

Gary Busselman

Gary Busselman
STEM LLC
7201 E Madison St
Sioux Falls, SD 57110
605-334-5692
gary@garybuss.com

Kjenstad, Jason

From:	Brian Sather [gdentltd@hotmail.com](mailto:gdentltd@hotmail.com)
Sent:	Monday, December 19,20162:00 PM
To:	Kjenstad, Jason; Jeff R. Mindt; Tom Hein; Shally Rogen; Eric \& Mary Stormo; Bob Reitz
Subject:	I-229 Major Investment Corridor Study

As one of the owners of property at 3508 S . Minnesota Ave.(\#108), I recommend a left turn from a turning lane for southbound traffic into the only remaining access opening on the north side. Also, there is no adequate access in these plans to the south of the building for delivery vehicles, trash haulers, and employees. If these concerns can not be corrected, I recommend a "No Build" as the option.

Brian Sather
gdentltd@hotmail.com

Kjenstad, Jason

From:	Malmberg, Chris
Sent:	Thursday, December 22, 2016 7:40 AM
To:	Meier, Dave; Kjenstad, Jason
Subject:	FW: Fryn' Pan Family Restaurant

Didn't know if this made it to you.
Chris Malmberg, PE, ENV SP
D 402.399 .4959 M 402.212.8136
hdrinc.com/follow-us
From: Stan Mitzel [mailto:smitzel@frynpan.net]
Sent: Wednesday, December 21, 2016 3:50 PM
To: sausen@siouxfalls.org; steve.gramm@state.sd.us; Malmberg, Chris
Cc: Dave Stukel; Rick Weisser
Subject: Fryn' Pan Family Restaurant
Shannon,

I was just looking at the proposed project of the 10 th street corridor as it affects my business at $10^{\text {th }}$ and Cleveland; If we are forced to move because the improvements are causing detrimental effects, I think a good relocation for us would be to take over the old Godfathers building along with the bank lot to the east. This would provide enough parking for us and a suitable location to make our business viable. It seems these lots have been continually vacant the last few years. Just thought I would share my thoughts as this project is very concerning to myself and partners and we would like to know where we stand sooner rather than later.

Thanks for your time,

## Stan Mitzel

Fryn' Pan Family Restaurant
3215 S. Carolyn Ave
Sioux Falls, SD 57106
Office: 605.361.7804
Cell: 605.201 .5141
Fax: 605.361.7921
smitzel@frynpan.net


## Informational Meeting

December $6^{\text {th }}, 2016$
6:00 pm to 8:00 pm
トア
HRGreen

## STUDY AREA MAP

## I-229 Corridor Study

Solberg Avenue Overpass to $60^{\text {th }}$ Street $N$ Overpass

## Meeting will focus on:

- Minnesota Avenue
- Cliff Avenue
- $10^{\text {th }}$ Street
- Rice Street
- Benson Road



## STUDY ADVISORY PARTNERS



South Dakota Department of
Transportation (SDDOT)

South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan Planning Organization (MPO)

Federal Highway
Administration (FHWA)

## PRESENTATION AGENDA

- Recommended I-229 Corridor Improvement Concepts
- Interchange/Cross Road Sub-studies
- Concept Evaluation Process
- Concept Evaluation Results
- Concepts Recommended for Further Consideration in Future Phases
- Next Steps


# I-229 CORRIDOR IMPROVEMENTS ADD $3^{\text {RD }}$ LANE EACH DIRECTION BETWEEN $26^{\text {TH }}$ STREET AND $10^{\text {TH }}$ STREET 



## I-229 CORRIDOR IMPROVEMENTS MODIFY CURVE RADIUS BETWEEN SOUTHEASTERN AVE \& $18^{\text {TH }}$ ST TO ALLOW 65 MPH DESIGN SPEED



## I-229 CORRIDOR IMPROVEMENTS

## PEDESTRIAN / BICYCLE CROSSING NEEDS \& IMPROVEMENTS

- Sub-study Proposed Improvements
- Minnesota Avenue
- Cliff Avenue
- $10^{\text {th }}$ Street
- Rice Street
- Benson Road
- Other Need Locations



## I-229 CORRIDOR IMPROVEMENTS

## INTELLIGENT TRANSPORTATION SYSTEMS (ITS) CONCEPTS

- Adaptive Signal Control Technologies
- CCTV Cameras
- Dynamic Message Signs
- Dynamic Road Warning Signs
- Traffic Detectors



## INTERCHANGE AND CROSS ROAD SUB-STUDIES

- Concept Evaluation Process
- Concept Evaluation Results
- Concepts for Further Consideration in Future Phases


## CONCEPT EVALUATION PROCESS

- Evaluation Factors:

Option	Description	Traffic Operations	Safety	Environmental	Property Impacts	Construction \& ROW Cost	DRAFT   Recommendation
$\begin{gathered} \text { Concept } \\ \text { ID } \end{gathered}$	Interchange and Corridor Type	-Traffic Delay   -Level of Service   -Interchange Year of Failure	Predicted Crash Reduction during 2012-2035	Potential impact to wetlands, historical resources, threatened and endangered species, public lands, and floodplains	Total Right of Way (ROW) Required and Acquisitions	Total Constuction Cost (including ROW)	Advance or Eliminate




- Recommended Action


# CONCEPTS FOR FURTHER CONSIDERATION MINNESOTA AVENUE - 2C 


## Concest Features:

- Resligns southbound exit ramp with 4 Sth Srent full acpass wifh signal-control. Constructs loop ramp for rothbound Mirnesota Averue to soufbosund $1-229$ movemart
Provides dual leff-sum lanes for al signalzed entrance and extr ramps. Increases separsion between ramp terminal / 4 Sth Strest intersections Reconstruds boh 1229 bridgas io Reconstruds boh l.229 bridges to Aveomun crocs-section
Maintains existing park access location.



# CONCEPTS FOR FURTHER CONSIDERATION MINNESOTA AVENUE - 2D 



## Concass Features.

- Redigns souttbound entr ramp with 49t Steet lall actess with signal-esntrol Constructs loap ramp for nartbocund Minvessta fuenne to southbound l-229 moverment.
Provides dual let-tum lanes for all sigroliced entrance and exit ramps. Incteases separation between ramp sarminal / 49 th Street intersectons. Reconssfucts both $1-229$ tridges to Reconsliucts both $1 \cdot 229$ bndges to
sccommodaly widened Mienesota Accommotay widana



## CONCEPT EVALUATION RESULTS minnesota avenue



# CONCEPTS FOR FURTHER CONSIDERATION MINNESOTA AVENUE - 8C 



# CONCEPTS FOR FURTHER CONSIDERATION MINNESOTA AVENUE - 8D 



# CONCEPTS FOR FURTHER CONSIDERATION MINNESOTA AVENUE - 9D 



## CONCEPT EVALUATION RESULTS MINNESOTA AVENUE (cont.)

Option	Description	Traffic Operations	Safety	Environmental	Property Impacts	Construction \& ROW Cost	DRAFT   Recommendation
Minn-8C	Single Point Urban Interchange, 5-Lane Big Sioux River to 41st St, 49th St Full Access	GOOD			GOOD		Advance
Minn-8D	Single Point Urban Interchange, 6-Lane Big Sioux River to 41st St, 49th St Full Access	GOOD			GOOD		Advance
Minn-9	Single Point Urban Interchange, Exit Ramp Connection to 49th St, 5-Lane Big Sioux River to 41st St						Advance

## CONCEPTS FOR FURTHER CONSIDERATION CLIFF AVENUE - 1



## CONCEPTS FOR FURTHER CONSIDERATION CLIFF AVENUE - 6



## CONCEPTS FOR FURTHER CONSIDERATION CLIFF AVENUE - 7



## CONCEPT EVALUATION RESULTS

 CLIFF AVENUE

## CONCEPTS FOR FURTHER CONSIDERATION $10^{\text {TH }}$ STREET - 2 (B/C)



## CONCEPTS FOR FURTHER CONSIDERATION $10^{\text {TH }}$ STREET - 5 (B/C)



## CONCEPTS FOR FURTHER CONSIDERATION $10^{\text {TH }}$ STREET - VAR



## 4-Lane Divided Corridor



## 5-Lane Undivided Corridor



## CONCEPT EVALUATION RESULTS $10^{\text {TH }}$ STREET

Option	Description	Traffic Operations	Safety	Environmental	Property Impacts	Construction \& ROW Cost	DRAFT   Recommendation
No-Build	No-Build	POOR		N/A	N/A	N/A	Advance
10th-2A	Single Point Urban Interchange, 6-Lane Divided Corridor				POOR	POOR	Eliminate   Property impacts, environmental impacts, and cost
10th-2B	Single Point Urban Interchange, 4-Lane Divided Corridor	GOOD					Advance
10th-2C	Single Point Urban Interchange, 5-Lane Undivided Corridor	GOOD					Advance

## CONCEPT EVALUATION RESULTS $10^{\text {TH }}$ STREET (cont.)



## CONCEPTS FOR FURTHER CONSIDERATION RICE STREET - 2A



## CONCEPTS FOR FURTHER CONSIDERATION RICE STREET - 3C



## CONCEPTS FOR FURTHER CONSIDERATION RICE STREET - C2



## CONCEPT EVALUATION RESULTS RICE STREET



## CONCEPTS FOR FURTHER CONSIDERATION BENSON ROAD - 1A



## CONCEPTS FOR FURTHER CONSIDERATION BENSON ROAD - 1B



## CONCEPTS FOR FURTHER CONSIDERATION BENSON ROAD - 4



## CONCEPT EVALUATION RESULTS benson road



## FUTURE I-229 CORRIDOR PROJECTS

## PRELIMINARY PRIORITIZATION

## - Minnesota Avenue

- Cliff Avenue
- $10^{\text {th }}$ Street
- Rice Street
- Benson Road
- Other projects list



## NEXT STEPS

- Assemble Stakeholder and Public Comments
- SDDOT / City Finalize Project Priorities
- Complete Study Reports
- SDDOT / City Program Projects
- Project Development Process = 5-6 year timeline when initiated by SDDOT \& City
- Prepare Interchange Modification Justification Report and Environmental Document
- Develop Project Design
- Acquire Right of Way
- Construction


## WWW.I229STUDY.COM

Home Cortact

## I-229 MAJOR INVESTMENT CORRIDOR STUDY



## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Dave Meier - HDR Engineering, Inc. 402-399-1068 or dave.meier@hdrinc.com

Shannon Ausen - City of Sioux Falls
605-367-8607 or sausen@siouxfalls.org
Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us


## INTERSTATE 229 MAJOR INVESTMENT STUDY

## Thanks for attending!



HRGreen

## APPENDIX -

Stakeholder Meetings \#1 -
December $15^{\text {TH }} \& \mathbf{1 6}^{\text {TH }}, 2014$ June 22 ${ }^{\text {ND }}, 2016$ (Cliff Avenue \& Rice Street)

## Benson Road

December 15 ${ }^{\text {th }}, 2014$

- Meeting Notes
- Sign-In Sheets
- PowerPoint Slides


## Meeting Minutes

Project: I-229 Major Investment Corridor Study; PL 0100(87) 3616P, PCN 044K
Subject: Stakeholder Meeting - Sub-study 4 (Benson Road from Cliff Avenue to Sycamore Avenue)
Date: Monday, December 15, 2014
Location: Sioux Falls Convention Center Conference Room 6

Attendees: Paul Nikolas, Travis Dressen (SDDOT)<br>Heath Hoftiezer, (City of Sioux Falls)<br>Russ Robers (First National Bank)<br>Jason Kjenstad, James Unruh (HDR)

Jason Kjenstad covered the PowerPoint slides (attached to meeting notes).
Follow-up discussion items included:

1. Existing Benson Road traffic observations:
1.1 A.M. peak hour - Westbound traffic on Benson Road west of I-229 is heavy and limits access from the l-229 SB off-ramp and from driveways along Benson Road.
1.2 P.M. peak hour - Eastbound traffic is heavy but flows reasonably well under normal traffic conditions (if there is no traffic diverted from other areas).

- The EB to SB movement at the I-229 SB on-ramp is at capacity.
- There is a high volume of left turning traffic from Potsdam Avenue to Benson Road. It is difficult for this traffic to find gaps in the Benson Road traffic.
1.3 Off-peak periods - The Lewis Avenue/Benson Road intersection is busy but not congested.

2. Existing I-229 traffic observations
2.1 Traffic coming from the on-ramps tends to merge into l-229 traffic before getting up to adequate speeds rather than staying in the auxiliary lane. The worst location for this is the $26^{\text {th }}$ Street SB on-ramp where the ramp traffic speeds are slow due to the tight ramp curve. It was noted that the preferred $26^{\text {th }}$ Street interchange configuration will improve this condition.
2.2 At $10^{\text {th }}$ Street, the trucks turning from the SB off-ramp to EB $10^{\text {th }}$ Street make the turn through the single point intersection slowly and cause the SB off-ramp traffic to back up to I-229 during peak hour traffic. Hoftiezer noted that this is partly due to how the loop detectors sense the truck traffic.
3. Existing geometric constraints
3.1 The south leg of the Lewis Avenue intersection is too narrow for the trucks that turn onto and off of Benson Road.
4. Benson Road improvement considerations
4.1 If a $3^{\text {rd }} \mathrm{WB}$ lane is added from $\mathrm{I}-229$ to Lewis Avenue, the Potsdam Avenue intersection may need to be right-in/right-out or a $3 / 4$ access condition with restriction of left-out movements. Potsdam traffic would re-route to Lewis Avenue. A signalized intersection along Lewis Avenue would be required to accommodate this traffic. Rob suggested that a signal may be most effective at $54^{\text {th }}$ Street.
4.2 A $3^{\text {rd }}$ EB lane may be necessary from Lewis Avenue to I-229 with free-flow conditions for the SB on-ramp movement. Dual right turns at the SB on-ramp would require signalization and may reduce capacity in comparison to an unrestricted movement.
4.3 The forecast traffic volumes for the MIS project assume that Benson Road will be extended to the east from Sycamore Avenue across the Big Sioux River. The timeframe for this is not known.
5. I-229 improvement considerations
$5.160^{\text {th }}$ Street access to/from I-229 would help divert traffic from Benson Road. It was noted the Federal Highway Administration limits the type of access at $60^{\text {th }}$ Street due to the close proximity to l-90 to the north.
5.2 Benson Road/l-229 ramp terminals will likely need to be signalized.
5.3 Various interchange configurations are being considered for Benson Road. The configurations will be presented at the next public meeting.

## Sign In Sheet


Clent Cityor Sisux Foilsiscult Dekoia Dopartment of Trassportation

Projocl $\mathrm{Na}_{2}$ : 207020

Meating Location: Sioux Fats Corvention Center

Please prits clearly. Thank you.				
	Nome	Qarmes		Emill
1	James Hnowh		605.377-776	jemes,unrwhahdriasum
2	Jassun Kienstud	-		
3	Heath Moftiester.	City of Sioux fulls		$\ldots$
-	Pant Noketas	Spyat		
5	Travis Dressin	Sopat	$\cdots$	$\cdots$
${ }^{6}$	Rusc Robers	1401 E. Brasompl 5T= 5057104	6045-780-5801	rerobursefinbsf.com
7				$\ldots$
8			$\cdots$	
s			.... ..	
16			-	
13			$\cdots$	$\cdots$
12				
]			$\because$	
17			$\cdots$	
${ }^{19}$			$\ldots$	$\cdots$
${ }^{76}$				$\cdots$
7				
${ }^{46}$				
$1{ }^{19}$				
20	- .			



# Interstate 229 Major Investment Study Exit 9 - Benson Rd 

Stakeholder Meeting December 15th, 2014 5:30 pm to 6:30 pm

$1-32$

## Study Area Map

## I-229 Corridor Study

Solberg Avenue Overpass to
60th Street N. Overpass

## Additional Studies

Exit 3 - Minnesota Ave
Exit 6 - $10^{\text {th }}$ Street
Exit 9 - Benson Road


## Study Advisory Partners



# Exit 9 (Benson Road) Crossroad Study Goals 

- Reduce traffic congestion at NB on/off interchange ramp terminal
- Develop Corridor Growth Plan to meet traffic demands from development taking place east of l-229
- Improve pedestrian mobility
- Make recommendations to improve corridor intersections
- Develop interchange alternatives to



## Benson Rd Corridor Overview



## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

James Unruh - HDR Engineering, Inc.
605-977-7740 or james.unruh@hdrinc.com
Shannon Ausen - City of Sioux Falls
605-367-8607 or sausen@siouxfalls.org


Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us


## Interstate 229 Major Investment Study Exit 9 - Benson Rd

## Thanks for Attending!!!!!

トつ

HRGreen
$10^{\text {Th }}$ Street
December 16 ${ }^{\text {TH }}, 2014$

- Meeting Notes
- Sign-In Sheets
- PowerPoint Slides


## Meeting Minutes

Project: I-229 Major Investment Corridor Study; PL 0100(87) 3616P, PCN 044K
Subject: Stakeholder Meeting - Sub-study 3 ( $10^{\text {th }}$ Street from Downtown Viaducts to Sycamore Avenue)

Date: Tuesday, December 16, 2014
Location: Sioux Falls Convention Center Conference Room 6
Attendees: See attached Sign In sheets
Jason Kjenstad covered the PowerPoint slides (attached to meeting notes).
Follow-up discussion items included:

1. Existing $10^{\text {th }}$ Street traffic observations:
1.1 A.M. peak hour - Congestion on $10^{\text {th }}$ Street in vicinity of interchange, WB through traffic queues can be obsessive from Cleveland to Hy-Vee.
1.2 P.M. peak hour - Congestion on $10^{\text {th }}$ Street in vicinity of interchange, WB \& EB through traffic queues can be obsessive near I-229. High demand for turning traffic at $10^{\text {th }}$ and Cleveland causes signal coordination issues with the I-229 interchange. Traffic queues on the interchange ramps are a concern.
2. Existing l-229 traffic observations
2.1 Interchange congestion is noticed during the AM and PM peak hours.
2.2 Crashes on the NB off ramp at $10^{\text {th }}$ Street a problem, has been better since SDDOT lengthened ramps onto the mainline.
3. Existing geometric constraints
3.1 The $10^{\text {th }}$ Street and I-229 Single Point Urban Interchange is restricted to single lefts in lieu of dual lefts which is a capacity limitation and leads to additional single lane queuing.
3.2 Proper queue lengths are not provided at $10^{\text {th }}$ Street and Cleveland causing overlaps with I-229 and $10^{\text {th }}$ Street.
$3.310^{\text {th }}$ and Sycamore was a high crash intersection due to the horizontal curvature, 2014 the intersection was reconstructed that changed all the lefts to dual movements that are protected movements. This will remove the crash trends.
4. $10^{\text {th }}$ Street improvement considerations
4.1 Place a raised median to improve traffic flow by removing conflict locations
4.2 Possibility widen to 6 lanes to increase capacity
4.3 Develop interchange alternatives that improve traffic flow a $1 / 4$ mile either side of I-229
4.4 Restrict turning movements at specific intersections to improve traffic flow
5. I-229 improvement considerations
5.1 Various interchange configurations are being considered for Minnesota Avenue. The configurations will be presented at the next public meeting.
5.2 Add an additional lane from $26^{\text {th }}$ Street to $10^{\text {th }}$ Street on I-229 to provide increased capacity.

The following notes were gathered during the discussion with the adjacent landowners and business owners. The statements below are questions asked by the meeting attendees for us to consider as we develop options:
. Biggest problems with $10^{\text {th }}$ St traffic operations are during morning and afternoon peak hours.

* Need to get commuters to use $6^{\text {th }} \mathrm{St}, 12^{\text {th }}$ St and $18^{\text {th }}$ St to access downtown to relieve $10^{\text {th }} \mathrm{St}$.
* Would raising the posted speed limit on $10^{\text {th }}$ St help traffic flow?
* Why was the traffic signal installed at Lowell?
* $10^{\text {th }}$ St should be widened only at the I-229 interchange.
* Constructing medians slow businesses down.
* If there were ramps from $\mathrm{I}-229$ to $6^{\text {th }}$ and $12^{\text {th }}$ those streets would be viable alternatives to $10^{\text {th }}$ for downtown access. More exists on I-229 would be a cheaper investment than elevated lanes on $10^{\mathrm{th}}$.
* At Cleveland, traffic from the north is the problem.
* Widening on Cleveland should be done on the east side.
* Relocate Old Home (from the east side of Cleveland).
* A median on Cleveland is not the answer.
* Improvements made at $10^{\text {th }}$ and Sycamore was a good project.
* Relocate the Pizza Hut.
* I-229 should be connected to River Blvd with ramps.
* $6^{\text {th }}$ St should be used instead of $12^{\text {th }} \mathrm{St}$ for a split diamond interchange with $10^{\text {th }} \mathrm{St}$.
* Westbound to southbound left turns from $10^{\text {th }} \mathrm{St}$ to Cleveland are difficult to make.


## Sign In Sheet

subjur		cet 36-Stugy
6lst		
Froest	P10109(37) 3strP, PCNOUK	Project No.: 20\%on
Mothal Dik	Turedsy. Dementer 15, 2014 3019 PM	Meetixg Lection: Sioux Fals Conventon Conler

Plase print dearly. Thank you.


## Sign In Sheet


Cliart City of Siour Fals/Soust Dabida Uepartinent of Irassoctation

Project Ms.: 20NOD
 Pease print elearly. Thankysu.


Sign In Sheet


Please print eleaty. Thank you.



# Interstate 229 Major Investment Study Exit 6 - $10^{\text {th }}$ Street 

Stakeholder Meeting December 16 ${ }^{\text {th }}, 2014$ 3:30 pm to $4: 30 \mathrm{pm}$

-)

## Study Area Map

## I-229 Corridor Study

Solberg Avenue Overpass to
60th Street N. Overpass

## Additional Studies

Exit 3 - Minnesota Ave
Exit 6 - $10^{\text {th }}$ Street
Exit 9 - Benson Road


## Study Advisory Partners



## Exit 6 (10 ${ }^{\text {th }}$ Street) Crossroad Study Goals

- Reduce traffic congestion
- Develop Corridor Growth Plan to meet traffic demands but minimizing impacts to developed properties
- Improve pedestrian mobility
- Improve safety for corridor users
- Identify improvements to the interchange as well as the $10^{\text {th }}$ Street



## $10^{\text {th }}$ Street Corridor Overview



## 10 ${ }^{\text {th }}$ Street Corridor Overview



## $10^{\text {th }}$ Street Corridor Overview



## $10^{\text {th }}$ Street Corridor Overview



## 10 ${ }^{\text {th }}$ Street Corridor Overview



## 10 ${ }^{\text {th }}$ Street Corridor Overview



## $10^{\text {th }}$ Street Corridor Overview



## 10 ${ }^{\text {th }}$ Street Corridor Overview



## Previous Study Ideas for $10^{\text {th }}$ Street Corridor

- Cleveland Ave. Transportation Study



## Previous Study Ideas for $10^{\text {th }}$ Street Corridor

- Northeast Transportation Study



## Previous Study Ideas for $10^{\text {th }}$ Street Corridor

- Northeast Transportation Study



## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Chris Malmberg - HDR Engineering, Inc. 402-399-4959 or chris.malmberg@hdrinc.com

Shannon Ausen - City of Sioux Falls
605-367-8607 or sausen@siouxfalls.org
Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us


## Interstate 229 Major Investment Study Exit 6 - $10^{\text {th }}$ Street

## Thanks for Attending!!!!!

## F)

HRGreen

Minnesota Avenue
December 16 ${ }^{\text {TH }}, 2014$

- Meeting Notes
- Sign-In Sheets
- PowerPoint Slides


## Meeting Minutes

Project: I-229 Major Investment Corridor Study; PL 0100(87) 3616P, PCN 044K
Subject: $\quad$ Stakeholder Meeting - Sub-study 2 (Minnesota Ave from $57^{\text {th }}$ Street to $41^{\text {st }}$ Street)
Date: Tuesday, December 16, 2014
Location: Sioux Falls Convention Center Conference Room 6

## Attendees: See attached Sign In sheets

Jason Kjenstad covered the PowerPoint slides (attached to meeting notes).
Follow-up discussion items included:

1. Existing Minnesota Avenue traffic observations:
1.1 A.M. peak hour - NB traffic on Minnesota Queues at I-229 and $41^{\text {st }}$ Street. $57^{\text {th }}$ Street traffic queues on East approach (WB) at Minnesota Avenue.
1.2 P.M. peak hour - SB traffic on Minnesota is extremely congested between $41^{\text {st }}$ Street and I-229. The 49 ${ }^{\text {th }}$ Street extension is blocked due to this.
2. Existing I-229 traffic observations
2.1 Traffic queues at the NB off ramp in both AM and PM peak hours and SB off ramp in the AM peak hour.
2.2 Travel Time runs on I-229 indicate capacity is good on the mainline.
2.3 Crashes are highly noticed along the NB off ramp.
3. Existing geometric constraints
3.1 Driveway from Yankton trail park is a concern in relationship to the l-229 ramps
3.2 Proximity of $49^{\text {th }}$ Street extension in relation to interchange.
4. Minnesota Avenue improvement considerations
4.1 Place a raised median to improve traffic flow by removing conflict locations
4.2 Possibility widen to 6 lanes to increase capacity
4.3 Develop interchange alternatives that work with the $49^{\text {th }}$ Street extension location on Minnesota Avenue
4.4 Possibility relocate Yankton Trail Park entrance further south
5. I-229 improvement considerations
5.1 Various interchange configurations are being considered for Minnesota Avenue. The configurations will be presented at the next public meeting.

The following notes were gathered during the discussion with the adjacent landowners and business owners.

* $57^{\text {th }}$ Street and Minnesota: Commenters noted that the angle of the curve in the intersection and the topographic changes create safety concerns - can't see when vehicles are in turning lanes. It was explained that a break in the section line (platting) was the original issue that caused the current misalignment and that it is being slowly corrected each time improvements are made. Angle crashes at the intersection and speed limit changes at the intersection approach were also discussed.
* Lotta Street concerns: (multiple mentions, compiled below) - also see handout provided by Aspen Condominiums representative (attached).
- Left turning movement safety from Lotta Street at Minnesota Avenue (driver delay and speed of approaching vehicles)
- Speed on Minnesota Avenue at Lotta Street, particularly northbound (picking up speed heading down the hill)
- Safety (turning gaps, speed, driveways and pedestrians/bicyclists)
- Offset drives can lead to some confusion on turning movements
- Residents at Aspen Condominiums are largely retired and many are elderly.
* Discussion on legal access: Southern building, east of the 49 ${ }^{\text {th }}$ Street intersection, has separate ownership than the others within the development. If they lose their access to Minnesota Avenue, they would lose their legal access to the property.
* Traffic volumes on 49 ${ }^{\text {th }}$. Comment that there has been much more traffic on $49^{\text {th }}$ over last couple years due to new construction and operation of Costco and a new apartment complex.
* Truck Parking West of Minnesota Avenue: A comment was made that Midco trucks park on- streets, creating safety concerns. It was noted that Midco is planning to build a separate facility with off-street parking in the near future, which could potentially alleviate this issue.
* Plans for $49^{\text {th }}$ Street: It was noted the City plans to construct $49^{\text {th }}$ Street beginning in 2017, starting on the west end. Multiple phases will over next several years. The final phase that ties into the existing $49^{\text {th }}$ Street segment would be last, and will be dependent on the committed Minnesota Avenue interchange design.
* New Development Traffic (Walmart, Costco, and Apartments): It was noted that each of these new developments have been accounted for in the travel demand model.
* Safe Access to Minnesota Avenue: A property owner of building immediately adjacent to southbound exit ramp mentioned it was very difficult to turn left out of the property onto Minnesota Avenue.
* Interior cross parcel access: One commenter noted that motorists cut across parking lots west of Minnesota Avenue (North of $49^{\text {th }}$ Street) via cross easements or interior driveways to avoid Minnesota Avenue.
* Center Median Proposed: City of Sioux Falls staff noted that they have begun to look at a median along Minnesota Avenue, starting near the airport and heading south along Minnesota Avenue.
* Bicyclist Safety: A commenter noted that there is a safety issue at the park access driveway with the number/frequency of bicyclists/pedestrians traveling north-south along Minnesota Avenue, across the park driveway. City staff noted they will continue with this study, at bike/ped bridges or overpasses for crossings of l-229.
* Adaptive Traffic Signal Control: City staff noted they plan to implement an adaptive traffic signal control system along Minnesota (from $18^{\text {th }}$ to the southern ramp terminal intersection).
* $41^{\text {st }}$ and Minnesota: City staff mentioned the intent to construct a new eastbound lane at $41^{\text {st }}$ Street, for approximately one to three blocks. This will create an EBL, EBL, EBT, and EBR lane configuration at the Minnesota intersection. Looking at construction as early as 2016. The City plans to replace the existing 5 -section heads at Minnesota to remove the Dallas phasing, thereby replacing it with the flashing yellow signal head.

Sign In Sheet



Proinel No 207031
Mooting Can Fubeday. Docenter 96, 2014 1.30 PM
Meetirg Locatbr Sious Filo Corverion Camir
Fiease print charly. Thank you.


Sign In Sheet

Clant Gity
Puvel FL 어00;37, 3015P, FON U44K
Meling pule Tuwdy, Decenber 体, 2th 180 PM
Project Ns: 2mane
Maring Laetben: Scux Fols Conworton Center

Flease print clearly. Thank yeu.



# Interstate 229 Major Investment Study Exit 3 - Minnesota Avenue 

Stakeholder Meeting December 16 th, 2014 1:30 pm to $2: 30 \mathrm{pm}$

$\vdash \supseteq$

## Study Area Map

## I-229 Corridor Study

Solberg Avenue Overpass to
60th Street N. Overpass

## Additional Studies

Exit 3 - Minnesota Ave
Exit 6 - $10^{\text {th }}$ Street
Exit 9 - Benson Road


## Study Advisory Partners



## Exit 3 (Minnesota Avenue) Crossroad Study Goals

- Reduce traffic congestion
- Evaluate interchange options
- Integrate plans for the $49^{\text {th }}$ Street Extension with the interchange options developed
- Improve pedestrian and bike access to the Big Sioux River Pathway
- Improve safety for corridor users
- Improve vehicle safety to Yankton Trail Park



## Minnesota Avenue Corridor Overview



## Minnesota Avenue Corridor Overview



## Minnesota Avenue Corridor Overview



## Relevant Previous Studies

Preliminary local street extensions, interchange concepts, and traffic impact analyses in the vicinity of I-229 \& Minnesota Avenue were identified in the following studies:

- $41^{\text {st }}$ Street Corridor Study
- Sioux Falls Major Street and Access Management Plan
- 2000 and 2010 Decennial Interstate Corridor Studies
- 49 ${ }^{\text {th }}$ Street Extension Study
- Traffic Impact Studies - Costco, Scheels, and Walmart


## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Ross Harris- HR Green, Inc.
515-657-5263 or rharris@hrgreen.com
Shannon Ausen - City of Sioux Falls
605-367-8607 or sausen@siouxfalls.org
Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us



## Interstate 229 Major Investment Study Exit 3 - Minnesota Avenue

Thanks for Attending!!!!!
F)


HRGreen

Rice Street
June 22 ${ }^{\text {ND }}, 2016$

- Sign-In Sheets
- PowerPoint Slides
- Meeting Notes (See Cliff Avenue and Rice Street Public Meetings Appendix)
- Comments (See Cliff Avenue and Rice Street Public Meetings Appendix)

Sign In Sheet

Clert Cyy of Seax Fals Sout Duksts Depatnert of Treresotation

Meving Oive Widnesdry. June 22,2015 1,20) PM
Project No: 280v90
Mowing Location: Soex Fals Cormetion Censir
Piesse print clearly. Thark you.



# Interstate 229 Major Investment Study Exit 7 - Rice Street 

## Stakeholder Meeting June 22nd 2016 1:00 pm to $2: 00 \mathrm{pm}$

ト)

## Study Area Map

## 1-229 Corridor Study

Solberg Avenue Overpass to

## 60th Street N. Overpass

Additional Studies
Exit 3 - Minnesota Ave
Exit 6-10 ${ }^{\text {th }}$ Street
Exit 9-Benson Road
Added Exit 4-Cliff Avenue Added Exit 7 - Rice Street


## Study Advisory Partners



South Dakota Department of
Transportation (SDDOT)
South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan
Planning Organization (MPO)
Federal Highway
Administration (FHWA)

## Exit 7 (Rice Street) Crossroad Study Goals

- Reduce traffic congestion
- Provide and Interchange that will meet the future capacity requirements
- Improve pedestrian mobility
- Improve safety for corridor users





Interstate/Ramp Construction Muricipal Street Construction Raised Median Construction Existing Bridge (Use It-Ptace) Bridge Construction Retaining Wal Existing ROWWProperty Line Existing Railroad
At Grade Ralroad Crossing
Signalized Intersection
RoublAcosess Closure
Number of Traffic Lanes

$\qquad$


Added lane on NB exit ramp


Relocated and
upgraded
railroad crossing







## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Dave Meier - HDR Engineering, Inc. 402-399-1068 or Dave.Meier@hdrinc.com

Shannon Ausen - City of Sioux Falls 605-367-8607 or sausen@siouxfalls.org

Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us

## Interstate 229 Major Investment Study Exit 7 - Rice Street

## Thanks for Attending!!!!!

## ト?

## Cliff Avenue

June 22ND, 2016

- Sign-In Sheets
- PowerPoint Slides
- Meeting Notes (See Cliff Avenue and Rice Street Public Meetings Appendix)
- Comments (See Cliff Avenue and Rice Street Public Meetings Appendix)

Sign In Sheet


Clent City of Sicux Follos South Ousta Depatriet of Traresotaton
Popiect PL 0500,87) 3ATEP, PCN O46K
Mentiog Dver

Propect Na: 207030
Moesing Locetion: Sicax Fals Corvection Certer
Plesse print clearty. Thank you


Sign In Sheet

Cliet Cify of Soar Fals/Soun Duisa Opportuet of Traespotrsion

Merling Date Wednesday, dune 22,2016 2:30 IM
Propect Na: 20n030
Veeting Lecation: Soax Fals Conversion Carter
Pleaso prirt clearly. Thank you.



## Study Area Map

## 1-229 Corridor Study

Solberg Avenue Overpass to

## 60th Street N. Overpass

Additional Studies
Exit 3 - Minnesota Ave
Exit 6-10 ${ }^{\text {th }}$ Street
Exit 9-Benson Road
Added Exit 4-Cliff Avenue Added Exit 7 - Rice Street


## Study Advisory Partners



South Dakota Department of
Transportation (SDDOT)
South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan
Planning Organization (MPO)
Federal Highway
Administration (FHWA)

## Exit 4 (Cliff Avenue) Sub - Study Goals

- Reduce traffic congestion
- Develop new geometrics to improve capacity at $41^{\text {st }}$ Street and Interchange
- Improve pedestrian mobility
- Improve safety for corridor users









LEGEND
InterstasomRamp Construction Munioipal Streat Construction Raised Modian Constuction Existing Oridge (Use In-Place) Bridge Construction Retaining Well Existing ROWU Property Uine Existing ROWMProperty

Signalzed insersection Number of Tratfc Lanes

E 41 ${ }^{\text {st }}$ St. widened and shifted north to increase separation from interchange

## - <br> Added and <br> extended turn lanes

on Cliff Ave

13

I-229 interchange reconstructed as Tight Diamond for added capacity

## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Brian Ray- HDR Engineering, Inc. 402-548-5066 or Brian.Ray@hdrinc.com

Shannon Ausen - City of Sioux Falls 605-367-8607 or sausen@siouxfalls.org

Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us


# Interstate 229 Major Investment Study Exit 4 - Cliff Avenue 

Thanks for Attending!!!!!

- 32


## APPENDIX -

Stakeholder Meetings \#2December $\mathbf{5}^{\text {TH }}$ \& $\mathbf{6}^{\boldsymbol{T H}}, 2016$

## Benson Road

December $5^{\text {tH }}, 2016$

- Meeting Notes
- Sign-In Sheets
- PowerPoint Slides
- Comments (See Public Meeting \#3 Appendix)


## Meeting Minutes

```
 Project: I-229 Major Investment Corridor Study, PL 0100(87) 3616P, PCN 044K
 Subject: Stakeholder Meeting - Sub-study 4 - Benson Road Exit 9
 Date: Monday, December 05, 2016
 Location: Sioux Falls Convention Center Conference Room 6
Attendees: See Attached Sign In Sheet - 5 Participants
```

Stakeholder comments and questions noted:

1. Stakeholders representing Boyer Trucks (West side of St Paul Ave, south of Benson Rd) - The proposed concept will prevent westbound traffic on Benson Rd from turning left at St Paul Ave to go south. Concern noted in particular for westbound semi-trailer truck traffic headed for businesses along St Paul Ave. That traffic would have to turn onto Potsdam Ave or Lewis Ave and find their way to St Paul Ave via 39 ${ }^{\text {th }}$ St N . Truck drivers headed for businesses along St Paul Ave may get lost along the way. The routing is too inconvenient. Boyer Truck has no access to Lewis Ave.
2. At least half of the businesses located south of Benson Rd and west of I-229 are truckingrelated.
3. Opposed to proposed median treatment on Benson Rd at Potsdam Avenue.
4. Stakeholder opinion - Crashes on Benson Road at intersections are due to speed on Benson Road (the existing posted speed limit is 40 mph ).
5. Will Concept Benson-4 impact the property to the northeast of the northbound I-229 entrance ramp at Benson Rd? Response: At this stage of concept development, it appears that property impacts along the northbound entrance ramp would be very limited.
6. Will right of way acquisition be needed for proposed widening at Benson Rd and Lewis Ave? Response: Probably.
7. How many years in the future will the proposed improvements be constructed? Response: At least six years.

# Meeting Minutes 

Project: I-229 MIS; PL 0100 (87) 3616P, PCN 044K<br>Subject: Sub-study 4 (Benson Road) Stakeholder Meeting Notes<br>Date: Monday, December 05, 2016<br>Location: SF Convention Center<br>Attendees: See sign in sheets

1. Presentation by Jason Kjenstad. $\mathbf{1 2 2 9}$ MIS Set 2 Stakeholder Mtg Benson Rd
2. Stakeholder questions/comments and responses during and after presentation:

- Trucking company on south side of St. Paul Avenue is concerned about loss of access from the proposed raised center median on Benson Road. Kjenstad response was that center median is needed for safety benefits; City design standards call for raised center median for roadways with 3 through lanes in each direction.
- With the proposed raised median at Benson Road/St. Paul Avenue intersection, trucks will be forced to use Lewis Avenue/Potsdam Avenue/39 ${ }^{\text {th }}$ Street combination to get to the trucking businesses along St. Paul Avenue. These streets do not now accommodate the widths and intersection radii required for truck movements. Kjenstad response was that alternative access routes would have to be reviewed for truck traffic and potential improvements would need to be considered.
- Recommend speed control/reduction methods on Benson Road to address traffic speeds in excess of posted speed limits. Kjenstad response was that besides speed limit enforcement, for arterial streets like Benson Road, the City typically does not incorporate speed control/reduction methods.
- South-side landowners were assessed for 2016 installation of sidewalk along the south side of Benson Road. Would landowners get assessed again for future sidewalk improvements associated with Benson Road reconstruction/widening? City response was that there would not be additional assessments to landowners for sidewalk work.
- Recommended adding a traffic signal at Benson Road/St. Paul Avenue intersection. Kjenstad response was that signals are spaced to facilitate traffic movements and a signal at the Benson Road/St. Paul Avenue intersection would not meet City or SDDOT signal spacing criteria.
- What is the timeframe for proposed Benson Road improvements? Kjenstad response was 7 to 10 years from now before any construction begins.
- $\quad$ SF Development owns the property in the northeast quadrant of the I-29/Benson Road interchange. They are concerned about the additional roadway right-of-way needed for the interchange loop options. Kjenstad response was that the City will work with the landowner throughout the development plan process.
- Benson Road traffic is not bad during off-peak hours; why is widening required? Kjenstad response was that peak period traffic is the basis for design and 3 through traffic lanes in each direction are needed to accommodate predicted peak period traffic to meet City and SDDOT level of service criteria.
- What is the cost difference between the interchange options? Response by Unruh was that DDI option is about $\$ 4 \mathrm{M}$ less that the loop options (\$40M estimated cost for options with loops; $\$ 36 \mathrm{M}$ estimated cost for DDI option).

Sign In Sheet
Subject I/229 Mjor Irvesment Coridor Study - Szibohoider Mobting for Benson Poad Sub-Sucy


Project No: 200030
Meving Data
Mooday, Decerber 5", 2016 300 PN
Mexting Lecation: Soux Falls Convenson Cener
Please grimt elearty. Thatk you.


INTERSTATE 229 MAJOR INVESTMENT STUDY
Exit 9 - Benson Rd Sub-Study

Stakeholder Meeting -)

## STUDY AREA MAP

## I-229 Corridor Study

Solberg Avenue Overpass to 60th Street N Overpass

## Meeting will focus on:

Exit 9 - Benson Road



## STUDY ADVISORY PARTNERS



South Dakota Department of
Transportation (SDDOT)

South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan Planning Organization (MPO)

Federal Highway
Administration (FHWA)

## PRESENTATION AGENDA

- Concept Evaluation Process
- Concept Evaluation Results
- Concepts Recommended for Further Consideration in Future Phases (Interchange \& Corridor Improvements)
- Next Steps


## CONCEPT EVALUATION PROCESS

- Evaluation Factors:

Option	Description	Traffic Operations	Safety	Environmental	Property Impacts	Construction \& ROW Cost	DRAFT   Recommendation
Concept ID	Interchange and Corridor Type	-Traffic Delay   -Level of Service   -Interchange Year of Failure	Predicted Crash Reduction during $2012-2035$	Potential impact to wetlands, historical resources, threatened and endangered species, public lands, and floodplains	Total Right of Way (ROW) Required and Acquisitions	Total Constuction Cost (including ROW)	Advance or Eliminate

- Evaluation Matrix to Compare Concepts
- Recommended Action


## CONCEPT EVALUATION RESULTS



## CONCEPTS FOR FURTHER CONSIDERATION BENSON-1A



## CONCEPTS FOR FURTHER CONSIDERATION <br> BENSON-1B



## CONCEPTS FOR FURTHER CONSIDERATION BENSON-4



## CONCEPTS FOR FURTHER CONSIDERATION BENSON IMPROVEMENTS



## BENSON ROAD PRELIMINARY PROJECT PRIORITY

- Priority recommendation based on existing and anticipated need and level of improvement and impacts associated with remaining concept options
- Benson Road Interchange and Corridor improvements $=$ High Priority
- See exhibit board for additional information


## NEXT STEPS

- Assemble Stakeholder and Public Comments
- Complete Study Report
- Project Development Process = 5-6 year timeline when initiated by SDDOT \& City
- Prepare Interchange Modification Justification Report and Environmental
Document
- Develop Project Design
- Acquire Right of Way
- Construction


## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

James Unruh - HDR Engineering, Inc. 605-977-7740 or james.unruh@hdrinc.com

Shannon Ausen - City of Sioux Falls 605-367-8607 or sausen@siouxfalls.org

Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us


# INTERSTATE 229 MAJOR INVESTMENT STUDY 

Exit 9 - Benson Rd Sub-Study

## Thanks for attending!

1 -)

10 ${ }^{\text {TH }}$ Street
December $\mathbf{5}^{\text {th }}, 2016$

- Meeting Notes
- Sign-In Sheets
- PowerPoint Slides
- Comments (See Public Meeting \#3 Appendix)


## Meeting Minutes

```
Project: I-229 Major Investment Corridor Study, PL 0100(87) 3616P, PCN 044K
Subject: Stakeholder Meeting - Sub-study 3 - Exit 6 (\(10^{\text {th }}\) Street) Sub-Study
Date: Monday, December 05, 2016
Location: Sioux Falls Convention Center Conference Room 6
Attendees: See Attached Sign In Sheet - 5 Participants
```

Stakeholder comments and questions noted:

1. Question from stakeholder associated with Fry'in Pan Restaurant (Northwest corner $10^{\text {th }} \&$ Cleveland) - Is a median proposed on Cleveland Avenue both north and south of $10^{\text {th }}$ Street? Response: The alternatives include a median on Cleveland Avenue both north and south of $10^{\text {th }}$ Street and dual left turn lanes are proposed on each Cleveland Ave approach to serve anticipated traffic.

The stakeholder noted that Cleveland Ave is only busy after school is dismissed, for about 45 minutes per day, so dual left turn lanes are not needed.

He stated that he does not support the proposed medians on Cleveland because he perceives that similar medians on $12^{\text {th }}$ St "ruined" businesses there.
2. How will parking impacts will be addressed? Response: Replacement parking would be sought, but if replacement parking could not be identified, acquisition of the property would be considered.
3. What happens to the Super 8 Hotel on the northeast corner of $I-229 / 10^{\text {th }}$ Street? Response: It was noted that all of the alternatives impact the hotel similarly.

Sign In Sheet

Clent Cty ol Slour Falls/Sest Daxcta Depenvent ol Thaniportaicn
Proinct PL O100(E7) S616P, FCN 04K
Profoct Ma: 207030
mewing Dult Mondisy, Deomerter 50,2016 4.50 PM
Meeting Location: Sloux Fals Convenson Centar
Please print clearly. Thank yoz.



## STUDY AREA MAP

## I-229 Corridor Study

Solberg Avenue Overpass to $60^{\text {th }}$ Street $N$ Overpass

## Meeting will focus on:

## Exit $6-10^{\text {th }}$ Street



## STUDY ADVISORY PARTNERS



South Dakota Department of
Transportation (SDDOT)

South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan Planning Organization (MPO)

Federal Highway
Administration (FHWA)

## PRESENTATION AGENDA

- Concept Evaluation Process
- Concept Evaluation Results
- Concepts Recommended for Further Consideration in Future Phases (Interchange \& Corridor Improvements)
- Next Steps


## CONCEPT EVALUATION PROCESS

- Evaluation Factors:

Option	Description	Traffic Operations	Safety	Environmental	Property Impacts	Construction \& ROW Cost	DRAFT   Recommendation
Concept ID	Interchange and Corridor Type	-Traffic Delay   -Level of Service   -Interchange Year of Failure	Predicted Crash Reduction during $2012-2035$	Potential impact to wetlands, historical resources, threatened and endangered species, public lands, and floodplains	Total Right of Way (ROW) Required and Acquisitions	Total Constuction Cost (including ROW)	Advance or Eliminate

- Evaluation Matrix to Compare Concepts
- Recommended Action


## CONCEPTS FOR FURTHER CONSIDERATION $10^{\mathrm{TH}}-2$ (B/C)



## CONCEPT EVALUATION RESULTS



## CONCEPTS FOR FURTHER CONSIDERATION $10^{\mathrm{TH}}-5$ (B/C)



## CONCEPT EVALUATION RESULTS (cont.)

Option	Description	Traffic Operations	Safety	Environmental	Property Impacts	Construction 8 ROW Cost	DRAFT   Recommendation
10th-5A	Diverging Diamond Interchange, 6-Lane Divided Corridor		GOOD		POOR	POOR	Eliminate   Property impacts, environmental impacts, and cost
10th-5B	Diverging Diamond Interchange, 4-Lane Divided Corridor	GOOD	GOOD		NEUTRA		Advance
10th-5C	Diverging Diamond Interchange, 5-Lane Undivided Corridor	GOOD	GOOD		GOOD		Advance
10th-9A	Tight Split Diamond, 6th St/10th St with 4-Lane Divided Corridor		PO	POOR		POO	Eliminate   Environmental impacts, cost, and lower traffic \& safety benefits
10th-9B	Tight Split Diamond, 6th St/10th St with 5-Lane Undivided Corridor		$0$	POC			Eliminate   Environmental impacts and lower traffic \& safety benefits
10th-Var							Advance

## CONCEPTS FOR FURTHER CONSIDERATION $10^{\text {TH }}$-Var



## 4-Lane Divided Corridor



## 5-Lane Undivided Corridor



## 10TH STREET PRELIMINARY PROJECT PRIORITY

- Priority recommendation based on existing and anticipated need and level of improvement and impacts associated with remaining concept options
- $10^{\text {th }}$ Street Interchange $=$ High Priority
- $10^{\text {th }}$ Street Corridor improvements $=$ Low Priority
- See exhibit board for additional information


## NEXT STEPS

- Assemble Stakeholder and Public Comments
- Complete Study Report
- Project Development Process = 5-6 year timeline when initiated by SDDOT \& City
- Prepare Interchange Modification Justification Report and Environmental Document
- Develop Project Design
- Acquire Right of Way
- Construction


## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Chris Malmberg - HDR Engineering, Inc. 402-399-4959 or chris.malmberg@hdrinc.com

Shannon Ausen - City of Sioux Falls 605-367-8607 or sausen@siouxfalls.org

Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us


# INTERSTATE 229 MAJOR INVESTMENT STUDY 

Exit 6 - 10 ${ }^{\text {th }}$ Street Sub-Study

## Thanks for attending!

$\vdash)$

## Cliff Avenue

December $5^{\text {TH }}, 2016$

- Meeting Notes
- Sign-In Sheets
- PowerPoint Slides
- Comments (See Public Meeting \#3 Appendix)


## Meeting Minutes

```
 Project: I-229 Major Investment Corridor Study, PL 0100(87) 3616P, PCN 044K
 Subject: Stakeholder Meeting - Sub-study 6-Cliff Avenue Exit 4
 Date: Monday, December 05, 2016
 Location: Sioux Falls Convention Center Conference Room 6
Attendees: See Attached Sign In Sheet - 10 Participants
```

Stakeholder comments and questions noted:

1. Are the crashes recorded within the Minnesota Ave study limits car crashes only? Response: A range of types of crashes involving a variety of vehicle types has been recorded in the Minnesota corridor.
2. Does the environmental impact assessment process consider loss of affordable housing? Development is taking affordable houses in the central city and the lost housing is replaced with higher cost housing on the metropolitan area periphery.
civer aliow works


## Sign In Sheet

sabinct	1229 Major Invesment Cosidar Suify - Subuhodie Meting lo	amon Sb-Sudy
Client		
Propect	P. 0100137) 3615P, PCN 044K	Projoct Ma: 207030
Meeting Cax	Mondyy, Decenter 5', 2016 6.00 PM	

Plesse print slearly, Thank you.



## STUDY AREA MAP

## I-229 Corridor Study

Solberg Avenue Overpass to 60th Street N Overpass

## Meeting will focus on:

Exit 4 - Cliff Avenue


## STUDY ADVISORY PARTNERS



South Dakota Department of
Transportation (SDDOT)

South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan Planning Organization (MPO)

Federal Highway
Administration (FHWA)

## PRESENTATION AGENDA

- Concept Evaluation Process
- Concept Evaluation Results
- Concepts Recommended for Further Consideration in Future Phases (Interchange \& Corridor Improvements)
- Next Steps


## CONCEPT EVALUATION PROCESS

- Evaluation Factors:

Option	Description	Traffic Operations	Safety	Environmental	Property Impacts	Construction \& ROW Cost	DRAFT   Recommendation
Concept ID	Interchange and Corridor Type	-Traffic Delay   -Level of Service   -Interchange Year of Failure	Predicted Crash Reduction during 2012-2035	Potential impact to wetlands, historical resources, threatened and endangered species, public lands, and floodplains	Total Right of Way (ROW) Required and Acquisitions	Total Constuction Cost (including ROW)	Advance or Eliminate

- Evaluation Matrix to Compare Concepts
- Recommended Action


## CONCEPTS FOR FURTHER CONSIDERATION CLIFF-1



## CONCEPTS FOR FURTHER CONSIDERATION CLIFF- 6



## CONCEPTS FOR FURTHER CONSIDERATION CLIFF - 7



## CONCEPT EVALUATION RESULTS

Option	Description	Traffic Operations	Safety	Environmental	Property Impacts	Construction \& ROW Cost	DRAFT   Recommendation
No-Build	No-Build	POOR		N/A	N/A	N/A	Advance
Cliff-1	NB Cliff to SB I-229 Loop Ramp						Advance
Cliff-6	Single Point Urban Interchange, 41st St Realigned to Pam Rd	VERY GOOD			POOR	POOR	Advance
Cliff-7	Single Point Urban Interchange, SB I-229 Off-Ramp Thru \& Right Turns at 41st St				VERY GOOD	POOR	Advance

## CLIFF AVENUE PRELIMINARY PROJECT PRIORITY

- Priority recommendation based on existing and anticipated need and level of improvement and impacts associated with remaining concept options
- Cliff Avenue Interchange = Medium Priority
- See exhibit board for additional information


## NEXT STEPS

- Assemble Stakeholder and Public Comments
- Complete Study Report
- Project Development Process = 5-6 year timeline when initiated by SDDOT \& City
- Prepare Interchange Modification Justification Report and Environmental Document
- Develop Project Design
- Acquire Right of Way
- Construction


## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Brian Ray- HDR Engineering, Inc 402-548-5066 or Brian.Ray@hdrinc.com

Shannon Ausen - City of Sioux Falls 605-367-8607 or sausen@siouxfalls.org

Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us


# INTERSTATE 229 MAJOR INVESTMENT STUDY 

Exit 4 - Cliff Avenue

## Thanks for attending!

-)

Rice Street
December 6 $^{\text {th }}, 2016$

- Meeting Notes
- Sign-In Sheets
- PowerPoint Slides
- Comments (See Public Meeting \#3 Appendix)


## Meeting Minutes

```
Project: I-229 Major Investment Corridor Study, PL 0100(87) 3616P, PCN 044K
Subject: Stakeholder Meeting - Sub-study 5 - Rice Street Exit 7
Date: Tuesday, December 06, 2016
Location: Sioux Falls Convention Center Conference Room 6
Attendees: See Attached Sign In Sheet - 21 Participants
```

Stakeholder comments and questions noted:

1. Railroad spur crossing ties up traffic on Rice Street to the east. Response (City): There are 3 to 5 unit trains per day using the spur line, with no projected increase indicated by BNSF Railroad. Growth is anticipated in the number of daily local trains, however.
2. The amount of additional right of way acquired from businesses along the north side of Rice St to avoid the need for an easement from BNSF along the south side of Rice St could create problems for those businesses in complying with City code requirements for customer and employee parking.
3. How would the residential property east of Eastgate Towing get access from Rice St? Response: Access to each of the properties on the north side of Rice St and between the l-229 interchange and N Glenwood Cir would be via the proposed back access road on the north side of the properties.
4. Public access along the proposed back access road poses a security concern for properties on the north side of Rice St. Response: The back access road would be lighted as a City street, but would not be designated an emergency snow route.
5. The contract that Eastgate Towing has with the City Police Dept requires towing operation in all weather. Eastgate Towing would need to use the back access road during and immediately after snow events.
6. Do the Rice St concepts assume that the proposed SD-100 project will be constructed? Response: Yes.
7. City - Would like to begin environmental impact assessment process sooner, if it is believed that Concept Rice-3C is the locally preferred option.
8. Will Concept Rice-3C slow down traffic on Cleveland Ave compared to existing conditions?
9. On Concept Rice-3C, how would access to the recycling pit be provided from realigned Cleveland Ave? There is no other access street shown.
10. Would storm sewers along Rice St be constructed as part of the proposed improvements? Response: Yes, storm sewers would be part of the Rice St improvements.
11. Will sidewalks along Rice St be constructed as part of the proposed improvements? Response: Yes, sidewalks on both sides of Rice St are proposed as part of the Rice St improvements. However, first time sidewalk construction costs will be assessed to adjacent property owners.
12. Will the proposed Rice St improvements with pedestrian or trail access along Rice St result in elimination of the existing trail along the Big Sioux River? Response: No. The river trail would not be impacted by proposed improvements along Rice St.
13. Is the Bahnson Ave extension to Benson Rd included in the proposed Rice St improvements? Response: No, construction of the Bahnson Ave extension would be tied to development need.

Sign In Sheet
Sabjet 1229 Mijor Investreet Coerdor Suby-Sbiochoider Meeting for Rice Sveet Sub-Sudy
Client Cty of Slow Falls/South Dasoa Deporyent of Tramportaion

Mexing Dase Mandry, Deoerter $5 \mathrm{n}, 2016$ 200 PM
Prolact Ma: 20No30
Meeting Location: Sloux Falls Conserfion Corter
Plesse pritt clearly. Thank you.


Sign In Sheet


Prolect PL O10C(B) 351EP, PCN OUEX
Meeving Dute
Mondry, Decerber 5, 2016 200 F11
Project Na: 20v030
Wetting Lecation: Soux Fals Corventon Cumbr
Ploaso print cleschy. Thank you.



Exit 7 - Rice Street Sub-Study

## Stakeholder Meeting

December 6th, 2016
F)

2:00 pm to 3:00 pm

## STUDY AREA MAP

## I-229 Corridor Study

Solberg Avenue Overpass to 60th Street N Overpass

## Meeting will focus on:

## Exit 7 - Rice Street



## STUDY ADVISORY PARTNERS



South Dakota Department of
Transportation (SDDOT)

South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan Planning Organization (MPO)

Federal Highway
Administration (FHWA)

## PRESENTATION AGENDA

- Concept Evaluation Process
- Concept Evaluation Results
- Concepts Recommended for Further Consideration in Future Phases (Interchange \& Corridor Improvements)
- Next Steps


## CONCEPT EVALUATION PROCESS

- Evaluation Factors:

Option	Description	Traffic Operations	Safety	Environmental	Property Impacts	Construction \& ROW Cost	DRAFT   Recommendation
Concept ID	Interchange and Corridor Type	-Traffic Delay   -Level of Service   -Interchange Year of Failure	Predicted Crash Reduction during 2012-2035	Potential impact to wetlands, historical resources, threatened and endangered species, public lands, and floodplains	Total Right of Way (ROW) Required and Acquisitions	Total Constuction Cost (including ROW)	Advance or Eliminate

- Evaluation Matrix to Compare Concepts
- Recommended Action


## CONCEPTS FOR FURTHER CONSIDERATION RICE-2A



## CONCEPTS FOR FURTHER CONSIDERATION RICE-3C



## CONCEPTS FOR FURTHER CONSIDERATION RICE-C2



## CONCEPT EVALUATION RESULTS



## RICE STREET PRELIMINARY PROJECT PRIORITY

- Priority recommendation based on existing and anticipated need and level of improvement and impacts associated with remaining concept options
- Rice Street (Cleveland Avenue Realignment) = Medium Priority
- Rice Street Interchange = Low Priority
- See exhibit board for additional information


## NEXT STEPS

- Assemble Stakeholder and Public Comments
- Complete Study Report
- Project Development Process = 5-6 year timeline when initiated by SDDOT \& City
- Prepare Interchange Modification Justification Report and Environmental Document
- Develop Project Design
- Acquire Right of Way
- Construction


## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc. 605-977-7740 or jason.kjenstad@hdrinc.com

Theo Weseman - HDR Engineering, Inc. 402-399-4801 or Theo.Weseman@hdrinc.com

Shannon Ausen - City of Sioux Falls 605-367-8607 or sausen@siouxfalls.org

Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us

# INTERSTATE 229 MAJOR INVESTMENT STUDY 

Exit 7 - Rice Street Sub-Study

## Thanks for attending!

F)

Minnesota Avenue
December ${ }^{\text {TH }}, 2016$

- Meeting Notes
- Sign-In Sheets
- PowerPoint Slides
- Comments (See Public Meeting \#3 Appendix)


## Meeting Minutes

```
Project: I-229 Major Investment Corridor Study, PL 0100(87) 3616P, PCN 044K
Subject: Stakeholder Meeting - Sub-study 2 - Minnesota Avenue Exit 3
Date: Tuesday, December 06, 2016
Location: Sioux Falls Convention Center Conference Room 6
Attendees: See Attached Sign In Sheet - 19 Participants
```

Stakeholder comments and questions noted:

1. When might proposed improvements on Minnesota Ave and at the I-229 interchange be constructed? Response: At least 12 to 15 years in the future.
2. What is the status of proposed improvements along $49^{\text {th }}$ St to the west? Response: Not all of the right of way for widening $49^{\text {th }}$ St to the west has been acquired. The widening is not currently programmed. When construction begins, it will start at the west end.
3. Access to businesses along Minnesota Ave from the back would kill the businesses.
4. Is a right turn in/out a possibility where driveway closures are shown on the concepts? Response: Yes.
5. Eliminate the proposed medians and build service roads.
6. If the southbound I-229 exist ramp terminal is shifted north to $49^{\text {th }}$ St as shown on Concept Minn-9D, traffic queues on Minnesota Ave would be pushed northward to $41^{\text {st }}$ St. Response: Proposed added lanes on Minnesota Ave would manage traffic queues.
7. There are no concept options that do not include a proposed median.
8. Do the I-229 bridges over Minnesota Ave need replacement? Response: The replacement of the bridges is driven by a need to widen Minnesota Ave.
9. Minnesota Ave should be widened to a six-lane section with a two-way left turn lane.
10. Existing speed on Minnesota Ave is a problem between $41^{\text {st }}$ and $57^{\text {th }}$ St.
11. Owner of vacant property at I-229 and Minnesota Ave (east side) - Delay in implementing proposed project discourages property improvements.
12. Property owner commented that his property has already been held hostage for ten years or more due to uncertainty about improvements and impacts along Minnesota Ave.
13. Estimated costs of implementing the proposed concepts should be made available to the public.
14. Concern about ruining businesses due to poor access or very limited access.
15. Can the proposed median be eliminated? Also discussion regarding impacts due to corridor width.
16. Can the green light be extended at $41^{\text {st }}$ and Minnesota? Comments regarding timing at the interchange ramp signals and how frequently are those updated.
17. Issues turning left from Lotta St onto Minnesota Ave. Support expressed for proposed traffic signal.
18. A lot of focus on the properties east of $49^{\text {th }}$ Street intersection (on either side of abandoned railroad line). Impacts from access closures/restrictions, alternate routes, changes to traffic patterns, U-turns, and control of access were all topics of discussion.
19. In favor of improved pedestrian and bike crossings of I-229. Glad this was looked at in the study.
20. Was a diverging diamond type interchange considered for Minnesota Ave? Response: Yes.

Sign In Sheet
Subipct IZ29 Major Investreet Consdor SLidy - Subuhoider Meeting for Mirtesola Avesje Sj-Sudy


Project No: 207030
Meeting Dase Tuesday, Decerber 6', $2016 \quad 330$ F14
Mesting Lecation: Soux Fill Coevemion Comer
Prease print cloarly, Thank you.


Sign In Sheet
Subject I229 Major Ivestreat Comidor Stydy = Sukebolder Mooting for Minnesola Awenue Su. Suicy

Cines
Project
Mestiog Dus

Cay of Sour Fals Soun Dubsta Depatnert of Trurspotiton

Tiesty, Decerter of, 2016 330 PM

Project Na: 200000
Meeting Locaton: Sloux Falls Convention Certar

Please print clearty, Tharik ysu.


PUBLEC WORKS

## Sign In Sheet




## STUDY AREA MAP

## I-229 Corridor Study

Solberg Avenue Overpass to $60^{\text {th }}$ Street $N$ Overpass

## Meeting will focus on:

## Exit 3 - Minnesota Avenue



## STUDY ADVISORY PARTNERS



South Dakota Department of
Transportation (SDDOT)

South Dakota Highway Patrol

City of Sioux Falls

Sioux Falls Metropolitan Planning Organization (MPO)

Federal Highway
Administration (FHWA)

## PRESENTATION AGENDA

- Concept Evaluation Process
- Concept Evaluation Results
- Concepts Recommended for Further Consideration in Future Phases (Interchange \& Corridor Improvements)
- Next Steps


## CONCEPT EVALUATION PROCESS

- Evaluation Factors:

Option	Description	Traffic Operations	Safety	Environmental	Property Impacts	Construction \& ROW Cost	DRAFT   Recommendation
Concept   ID	Interchange and Corridor Type	-Traffic Delay   -Level of Service   -Interchange Year of Failure	Predicted Crash Reduction during 2012-2035	Potential impact to wetlands, historical resources, threatened and endangered species, public lands, and floodplains	Total Right of Way (ROW) Required and Acquisitions	Total Constuction Cost (including ROW)	Advance or Eliminate

- Evaluation Matrix to Compare Concepts
- Recommended Action


# CONCEPTS FOR FURTHER CONSIDERATION MINN-2C 



## Concest Features:

- Resligns southbound exit ramp with 4 Sth Sroat full acosss wifl signal-control. Constructs loop ramp for rothbound Mirnesota Averue to souftbound 1-229 movemart
Provides dual leff-sum lanes for alt signalized entrance and ext ramps. Increases separsion between ramp terminal / 4 Sth Strost intersections Reconstruds both 1229 bridges is Reconstrudts boh 1229 bridges bo accomncoale wiceres
Maintains existing park access location.



# CONCEPTS FOR FURTHER CONSIDERATION MINN-2D 



## Concass Features.

- Redigns southbound entr ramp with 49 h Sveet lall actess with signal-esntrol Constructs losp ramp for nortibcund Mnnessta fuenne to southbound l-229 moverment.
Provides dual let-tum lanes for all sigraliced entrance and exit ramps. Incrtases seperation between ramp sarminal / 49 th Street intersectons. Reconsifucts both $1-229$ tridges to Reconstructs both $1 \cdot 229$ bndges to
sccommodate widened Mienesola sccammodaty widana
- Maintains existing park access location.



## CONCEPT EVALUATION RESULTS

Option	Description	Traffic Operations	Safety	Environmental	Property Impacts	Construction \& ROW Cost	DRAFT   Recommendation
No-Build	No-Build	POOR		N/A	$N / A$	N/A	Advance
Minn-2C	Diamond with Loop, Direct Connect to 49th St, 5-Lane Big Sioux River to 41st St						Advance
Minn-2D	Diamond with Loop, Direct Connect to 49th St, 6-Lane Big Sioux River to 41st St	NEUTRAL			NEUTRAL		Advance
Minn-5D	Diverging Diamond Interchange, 6-Lane Big Sioux River to 41st St, 49th St Right-In Right-Out						Eliminate   Closure of 49th Street Access

## CONCEPTS FOR FURTHER CONSIDERATION MINN-8C



Sub-Study 2 - Minnesota Avenue

## CONCEPTS FOR FURTHER CONSIDERATION MINN-8D



## CONCEPTS FOR FURTHER CONSIDERATION MINN-9D



Sub-Study 2 - Minnesota Avenue

## CONCEPT EVALUATION RESULTS (cont.)

Option	Description	Traffic   Operations	Safety	Environmental	Property   Impacts	Construction   \& ROW Cost	DRAFT   Recommendation
Minn-8C							
Single Point Urban   Interchange, 5-Lane   Big Sioux River to   41st St, 49th St Full   Access	Single Point Urban   Interchange, 6-Lane   Big Sioux River to   41st St, 49th St Full   Access	Single Point Urban   Interchange, Exit   Ramp Connection to   49th St, 5-Lane Big   Sioux River to 41st St					

## MINNESOTA AVENUE PRELIMINARY PROJECT PRIORITY

- Priority recommendation based on existing and anticipated need and level of improvement and impacts associated with remaining concept options
- Minnesota Avenue Interchange and Corridor improvements = High Priority
- See exhibit board for additional information


## NEXT STEPS

- Assemble Stakeholder and Public Comments
- Complete Study Report
- Project Development Process = 5-6 year timeline when initiated by SDDOT \& City
- Prepare Interchange Modification Justification Report and Environmental Document
- Develop Project Design
- Acquire Right of Way
- Construction


## PROJECT CONTACTS:

Jason Kjenstad - HDR Engineering, Inc
605-977-7740 or jason.kjenstad@hdrinc.com
Jon Wiegand- HR Green, Inc.
605-221-2656 or jwiegand@hrgreen.com
Shannon Ausen - City of Sioux Falls
605-367-8607 or sausen@siouxfalls.org
Steve Gramm - SDDOT Project Development 605-773-6641 or steve.gramm@state.sd.us


## INTERSTATE 229 MAJOR INVESTMENT STUDY

# Exit 3 - Minnesota Avenue Sub-Study 

## Thanks for attending!

## ト2 <br> HRGreen

## APPENDIX I-

Existing Access Control Figures







[^0]:    *Passenger cars per mile per lane

