Wind Analysis for Airport Planning

South Dakota's 36th Annual Airports Conference

The Basics: Wind, Aircraft, and Runways

- Aircraft typically takeoff and land into the wind because it increases lift and lowers ground speed.
 - > Land at lower (safer) speeds
 - > Shorter takeoffs & landings
- Aircraft heading must compensate for crosswinds
- > All aircraft have crosswind limits

The Basics: Crosswind Component

11 24 411

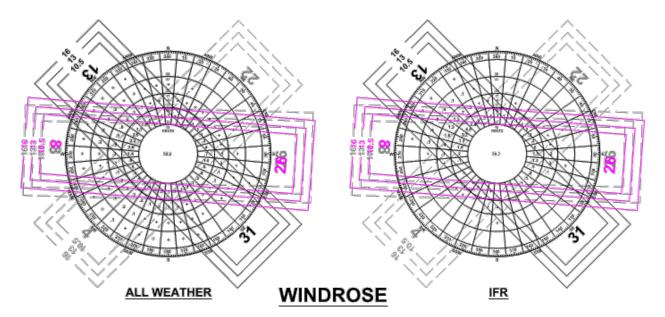
CROSSWIN COMPONENT -KNOTS EXAMPLE: HEADWIND COMPONENT 10 KNOTS

 Determined by wind speed and direction relative to runway heading
 For Runway Analysis, an aircraft's allowable crosswind component based on aircraft size and approach speed

Table 3-1. Allowable crosswind component per Runway Design Code (I			
RDC	Allowable Crosswind Component		
A-I and B-I *	10.5 knots		
A-II and B-II	13 knots		
A-III, B-III,	16 knots		
C-I through D-III			
D-I through D-III			
A-IV and B-IV,	20 knots		
C-IV through C-VI,			
D-IV through D-VI			
E-I through E-VI	20 knots		

The Basics: Crosswind Runways

Allows aircraft to operate when winds are not favorable for the primary runway

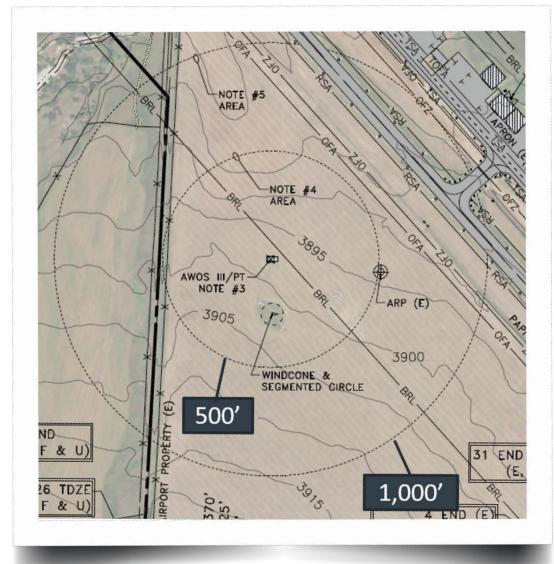

Wind Data Analysis

- > Runway Orientation
 - > Safety
 - > Efficiency (Minimize Runway/Infrastructure Needs)
- > Airport Utilization
 - > Better Understand Operational Impacts
 - > Existing "Wind Coverage" Limitations
 - > Runway Closures (temporary or permanent)
 - > Evaluate Instrument Approach Procedures
 - > Prioritize Needs
 - > "All Weather" vs. IFR Data

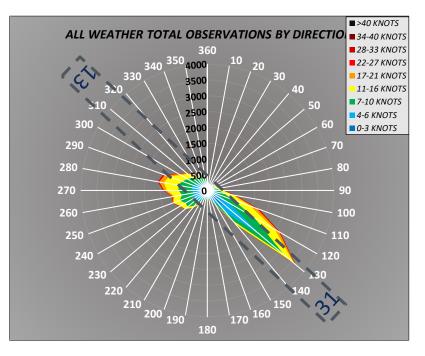
Wind Coverage

- Apply true orientation of runways to wind data
- Determine wind coverage for allowable crosswind components
 - > 10.5, 13, 16 and 20 knots
- Desirable for wind coverage to be 95% or greater

	ALL-WEAT	HER WIND COV	ERAGE		
CONFIGURATION	CROSSWIND COMPONENT				
CONTIGURATION	10.5 KNOTS	13 KNOTS	16 KNOTS	20 KNOTS	
RUNWAY 13-31	93.05%	96.58%	98.19%	-	
RUNWAY 8-26	94.42%	97.25%	-	-	
	-	-	-	-	
COMBINED	97.40%	98.50%	98.19%	-	
SOURCE: KSPF AWO	S (2009-2018, HOU	RLY) FROM NATIO	NAL CLIMATIC DAT	TA CENTER	
82,673 TOTAL OBSER	VATIONS				
INST	RUMENT FLIGH	IT RULES (IFR)	WIND COVERAG	E	
CONFIGURATION	CROSSWIND COMPONENT				
CONFIGURATION	10.5 KNOTS	13 KNOTS	16 KNOTS	20 KNOTS	
RUNWAY 13-31	96.99%	99.17%	99.79%	-	
RUNWAY 8-26	94.40%	98.09%	-	-	
	-	-	-	-	
COMBINED	99.52%	99.88%	99.79%	-	
SOURCE: KSPF AWO	S (2009-2018, HOU	RLY) FROM NATIO	NAL CLIMATIC DAT	TA CENTER	
5,179 TOTAL OBSERV	ATIONS				
IFR = VISIBILITY LOW	ER THAN 3 MILES	OR CEILING LOW	ER THAN 1,000 FE	ET	

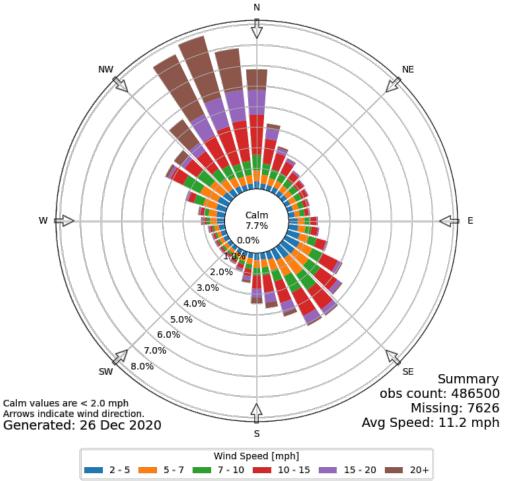

Understanding Weather Stations

- Types of Airport Weather Stations
 AWOS/ASOS
- > Weather Conditions Reported
 - > Depends on Type of Station
 - Examples: Temp/Dewpoint, Wind, Altimeter, Ceiling, Visibility, Precipitation
- > Other Weather Sources
 - > Valuable localized wind information

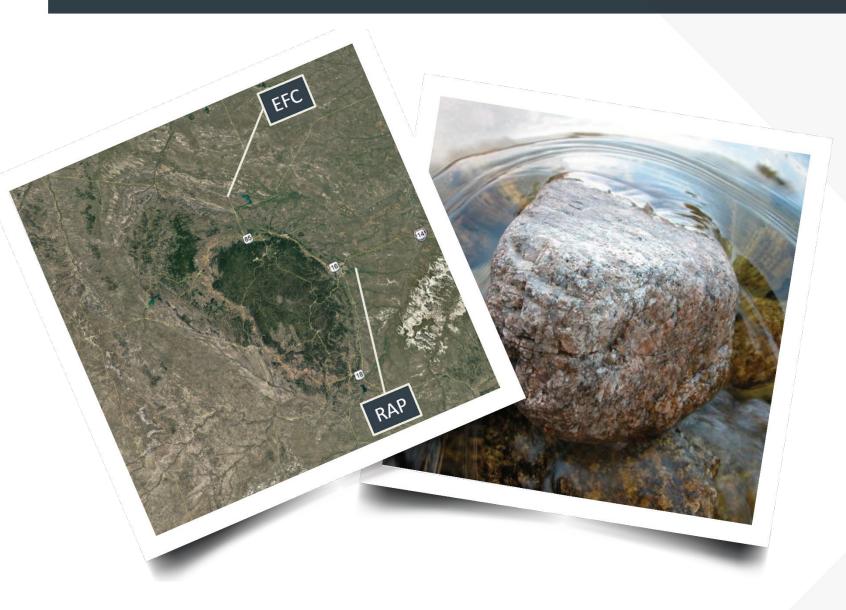

Siting Weather Stations

- For accurate wind measurements, weather equipment must be located away from structures, vegetation and terrain.
- > No sheltering obstructions within
 - > 500 feet –15' below sensor height
 - > 1,000 10' below sensor height

Siting Weather Stations


EKALAKA AIRPORT ALL-WEATHER WIND COVERAGE			
CONFIGURATION	CROSSWIND COMPONENT		
CONTIGUNATION	10.5 KNOTS	13 KNOTS	
RUNWAY 13-31	95.02%	98.23%	
SOURCE: K97M SUPERAWOS (03/2015 - 03/2019, HOURLY) FROM NATIONAL CLIMATIC DATA CENTER			
31,871 TOTAL OBSERVATIONS			

Wind Data


[RAP] RAPID CITY Windrose Plot Time Bounds: 01 Jan 1970 02:00 AM - 26 Dec 2020 12:52 AM America/Denver

- Preferably 10 Complete Years
- Hourly Data
- Nearest Weather Station with Similar Geographical Features
- Source NCEI (Former NCDC)

Using Off-Airport Wind Data

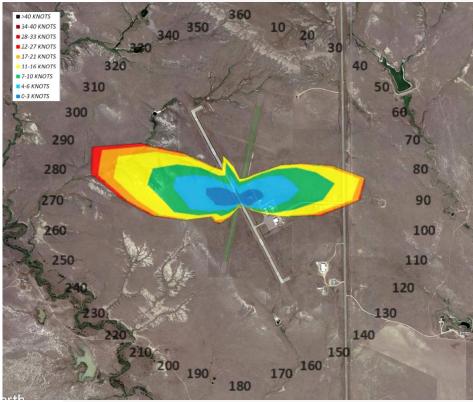
Surface air at Belle
 Fourche is impacted
 by the Black Hills to
 the south in the
 same way a rock
 changes the flow of
 a stream

Using Off-Airport Wind Data

2002 ALP – Rapid City ASOS

ALL WEATHER WINDROSE DATA TABLE

RUNWAY	10.5 KNOTS	13 KNOTS	16 KNOTS	20 KNOTS
14-32	93.99%	97.46%	99.34%	99.87%
18-36	91.66%	95.33%	97.94%	99.25%
8-26	72.43%	79.36%	87.49%	93.30%
COMBINED	99.77%	99,96%	99.99%	100.0%


>40 KNOTS ALL WEATHER TOTAL OBSERVATIONS BY DIRECTION 34-40 KNOTS 28-33 KNOTS 10 22-27 KNOTS 340 330 17-21 KNOTS 320 11-16 KNOTS 40 7-10 KNOTS 310 50 4-6 KNOTS 4000 300 60 0-3 KNOTS 3000 290 70 2000 80 280 1000 90 270 260 100 250 110 240 120 230 130 220 140 210 180

A few years of the right data is better than 10 years of the wrong data

2020 – Belle Fourche SuperAWOS

ALL-WEATHER WIND COVERAGE				
CONFIGURATION	CROSSWIND COMPONENT			
	10.5 KNOTS	13 KNOTS	16 KNOTS	
RUNWAY 14-32	85.46%	92.24%	96.75%	
RUNWAY 18-36	81.48%	88.59%	-	
RUNWAY 11-29	96.48%	-	-	
COMBINED	99.08%	94.07%	96.75%	

SOURCE: KEFC SUPERAWOS (2010-2019, HOURLY) FROM NCDC 86,129 TOTAL OBSERVATIONS

QUESTIONS

