

Environmental Assessment & Section 4(f) Evaluation

May 2023

WETLAND DELINEATION REPORT

SD 44 Platte-Winner Bridge Corridor Study and Environmental Assessment

CHARLES MIX AND GREGORY COUNTIES, SOUTH DAKOTA

March 2018

Prepared for: South Dakota DOT Environmental Office

> Prepared by: HR Green, Inc. Sioux Falls, South Dakota

Table of Contents

1.	INTRODUCTION	1
2.	BACKGROUND DATA COLLECTION AND REVIEW	1
3.	METHODS	3
4.	RESULTS	3
5.	SUMMARY	12

Figures

- Figure 1 Location Map/USGS Quadrangle
- Figure 2 Aerial Photo/Lidar Contours
- Figure 3 –USDA Soils/NWI
- Figure 4 FEMA Floodplains
- Figure 5 Delineated Wetland Overview
- Figure 6 Delineated Wetland Detail East
- Figure 7 Delineated Wetland Detail Northwest
- Figure 8 Delineated Wetland Detail Southwest

Appendices

- Appendix A Wetland Data Forms
- Appendix B Representative Site Photos
- Appendix C NRCS Web Soil Survey
- Appendix D WETS Climate and Precipitation Data
- Appendix E Average Pool Elevations Fort Randall Dam

1. INTRODUCTION

HR Green completed a wetland delineation for South Dakota DOT (SDDOT) as part of the SD Highway 44/Platte-Winner Bridge and Corridor Study.

The study area includes areas being considered that would be impacted by bridge, bridge approaches, or staging areas used during construction. The study area crosses the east and west banks of Lake Francis Case, a Missouri River reservoir, and parts of Snake Creek Recreation Area and the West Bridge Recreation Area boat ramp.

Land use in the study area is rural right-of-way (ROW) with recreation area, a boat ramp, and rangeland.

The study area is located within the Land Resource Region F – Northern Great Plains Spring Wheat Region, 55C – Southern Black Glaciated Plains east of the bridge and LRR G – Western Great Plains Range and Irrigated Region, 63B-Southern Rolling Pierre Shale Plains west of the bridge (NRCS 2006).

HR Green wetland scientist Ted McCaslin (Minnesota Wetland Delineator Certified #1180) and HR Green project scientist Pete Lovell conducted field wetland delineation on June 15, 2017. The delineation used methods described in the 1987 *Corps of Engineers Wetlands Delineation Manual* and the 2010 *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Great Plains Region (Version 2.0).* The following sections describe the background data collected and reviewed, delineation methods used, and the results of the wetland delineation.

2. BACKGROUND DATA COLLECTION AND REVIEW

Prior to the field investigation, several data sources were consulted to identify potential wetlands and streams within the study area. These included:

- U.S. Geologic Survey (USGS) 1:24,000 Scale Topographic Maps (See Figure 1).
- 2017 Project Lidar (See Figure 2).
- 2016 NAIP Aerial Photography, USDA (See Figure 2).
- National Wetlands Inventory, U.S. Fish and Wildlife Service, 2016 (See Figure 3).
- USDA Soils Data (See Figure 3 and Appendix C).
- FEMA Floodplain Mapping (See Figure 4).
- Antecedent rainfall and climate data, NRCS (See Appendix D).
- Average Pool Depth, Fort Randall Dam (See Appendix E).

2.1 USGS Quadrangle Map and LiDAR Data

The USGS Quadrangle Digital Raster Graphic was downloaded from South Dakota DENR (See Figure 1) and LiDAR data (project specific data gathered by HR Green in 2017) were observed (See Figure 2).

The USGS Quadrangle for the project area shows Lake Francis Case (Missouri River) at an elevation of 1,354 feet in the center of the study area. The east half of the study area shows

elevations along gently rolling hills from 1,354 feet at the lake to a high point of 1,568 feet at the east end of the study area along SD 44. Elevations at the lake are generally abrupt except for an intermittent stream and inlet in the southeast quadrant of the study area south of the bridge. The west half shows elevations along gently rolling hills between 1,354 feet at the lake and 1,620 feet with an elevation of 1,550 at the west end of the study area along SD 44. Elevations above the lake are generally abrupt except for a backwater in the southwest quadrant south of the bridge.

Lidar data shows a high point of 1,582 feet at the east end of the study area along SD 44 in the east half and a high point of 1,631 at the top of a river bluff south of SD 44 on the south side. Elevations are similar to those observed in the USGS Quadrangle.

2.2 National Wetlands Inventory Map

Four NWI polygons are present in the study area associated with the lake. The center of Lake Francis Case is L1UBHh (Lacustrine, Limnetic, Unconsolidated Bottom, Permanently Flooded, diked/impounded) and the other three are along the lake fringe are L1UBGh (Lacustrine, Limnetic, Unconsolidated Bottom, Intermittently Exposed, diked/impounded). See Figure 3 for NWI polygon locations.

2.3 NRCS Soil Data

A NRCS web soil survey was conducted for the project study area and reviewed. No hydric soil units are present. (See Figure 3 and Appendix C).

Map Unit Symbol	Map Unit Name	Hydric?
BdF	Betts loam, 25 to 40 percent slopes	No
LcF	Labu-Sansarc clays, 15 to 50 percent slopes	No
LoB	Lowry silt loam, 2 to 6 percent slopes	No
LoC	Lowry silt loam, 6 to 9 percent slopes	No
ObE	Okaton-Lakoma silty clays, 15 to 50 percent slopes	No
PrB	Promise clay, 3 to 6 percent slopes	No
SnF	Sansarc clay, 25 to 70 percent slopes	No
SoF	Sansarc-Boyd complex, 15 to 40 percent slopes	No
SuE	Sully silt loam, 9 to 25 percent slopes	No
W	Water	Unranked

Table 1 - Soil map units in study area

2.4 **FEMA** Floodplains

The FEMA Flood Map Service Center was queried for floodplain mapping for the study areas. FEMA has completed a study for Gregory County. Lake Francis Case and several inlet areas are mapped Zone A – 100-year floodplain without base flood elevation (See Figure 4).

2.5 Antecedent Precipitation

Antecedent precipitation and WETS tables climate data were reviewed for the Academy, South Dakota weather station from the NRCS Electronic Field Office for South Dakota (See Appendix D). The delineation was completed mid-June. Dryer than normal precipitation was recorded January, February, March, May, and June with normal precipitation in April.

2.6 Lake Francis Case Pool Levels

The average 12:00 a.m. elevation of the reservoir at Fort Randall dam (i.e. Lake Francis Case) was reviewed for annual and seasonal variability (See Appendix E). The elevation in June 2017 was 1355.0 (ft msl). In the twelve months prior to the delineation the minimum monthly average elevation was 1,338.0 (December 2016) and high was 1357.1 (June 2016). Between 1967 and 2016 the minimum June elevation was 1352.1 and maximum was 1370.1. Overall, the minimum average elevation for that time period was 1320.7 observed in 1969 and maximum was 1,370.5 observed in May 1997. Fluctuating pool levels for the year before the delineation appear to be close to annual norms.

3. METHODS

Wetlands within the Project Area were identified and their boundaries delineated using the Routine On-Site Determination Method defined in the 1987 *Corps of Engineers Wetlands Delineation Manual* and 2010 Regional Supplement to the *Corps of Engineers Wetland Delineation Manual: Great Plains Region (Version 2.0).* A field wetland delineation was completed for the study area on June 15, 2018. Great Plains Region data forms were completed for accessible plant communities and representative wetland and non-wetland sites within the study area. Data forms are included in Appendix A.

Wetland boundaries were identified in the field, drawn on high resolution photographs, and recorded with GPS equipment with sub-meter accuracy. Representative photographs taken during the field delineation are in Appendix B.

Wetland vegetation, soil indicators, hydrology indicators and other data were recorded on Great Plains Supplement data forms at 11 sample points within the study area. Data forms were recorded for most wetlands. Additional plots were sampled throughout the study area to refine the wetland boundaries before the boundaries were recorded.

4. RESULTS

Seven wetlands totaling 4.151 acres were identified with the study area. Additionally, 249.5 acres of Lake Francis Case are within the study area. Table 3 shows name, observed Cowardin classification, acres in study area, observed jurisdictional status, and location data for each wetland. See the map series in Figure 4 for wetland locations. Individual wetlands are described below.

Feature/ Station	Lat°	Longº	Observed Jurisdictional Status	Observed Cowardin Classificatio n	Acres
Lake Francis Case	43.38560 9	- 99.133368	WOUS	L1UBHh	249.47 1
SE-1	43.39062	- 99.115361	WOUS/EO11990	PUBFh	0.349
NW-1	43.38447 5	- 99.143849	WOUS/EO11990	PEMA	0.091
NW-2	43.38369 4	- 99.145089	EO11990	PEMB	0.02
SW-1	43.37951 9	- 99.143379	WOUS/EO11990	PEMJ	2.435
SW-2	43.38007	- 99.143125	WOUS/EO11990	PEMB	0.658
SW-3	43.38123 2	- 99.143222	WOUS/EO11990	PEMA	0.180
SW-4	43.38050 1	- 99.144453	WOUS/EO11990	PEMB	0.419

Table 2 – Delineated Wetlands and in Study Area

*WOUS = Water of the United States. EO 11990 = Executive Order 11990 Protection of Wetlands

Lake Francis Case

The study area includes a bridge over Lake Francis Case, a Missouri River reservoir with water levels controlled at Fort Randall Dam. Average pool levels (See Appendix E) show significant flux in water levels. The average pool level for June 2017 was 1,355.0, near a 12-month high of 1,357.1 from June 2016. However, levels as high as 1,338.0 were recorded for the pool within the prior 12 months. The Ordinary High Water Mark of Lake Francis Case was determined by identifying a line absent of vegetation where evidence of prolonged inundation and/or flow were also apparent. This line was readily apparent for much of the study area.

Photo 1 - Looking northeast, OHWM of Lake Francis Case at center of photo. SD 44 bridge at right near boat ramp in SW bridge quadrant.

Wetlands

Wetland SE-1 is located in the southeast quadrant of the bridge along the fringe of an impounded recreational fishing pond. Sample points SE-2 Wet and SE-2 Up were used for the delineation. Obligate (OBL) hydrophytic vegetation including hybrid cattail (*Typha X glauca*) and reed canary grass (*Phalaris* arundinacea) Facultative Wet (FACW) were observed along the edge of the pond. Hydric soil indicators Hydrogen Sulfide (A4) and Redox Dark Surface (F6) were observed. Hydrology primary indicator Hydrogen Sulfide Odor (C1) was observed. Wetland boundaries are abrupt around the pond into maintained rock shoreline or hillslope. Sample point SE-2 Up was taken within a drainage pathway into the pond down from SD 44 and found to be upland.

Photo 2 - Looking east, Wetland SE-1 in foreground. Fishing pond at right of photo.

Wetland NW-1 is located in a small inlet of Lake Francis Case at the toe of a long slope in the northwest quadrant of the study area. Sample points NW-1 Wet and NW-1 Up were used to delineate the wetland. Hydrophytic vegetation reed canary grass was observed and other vegetation indicated recent disturbance including a cover crop of oats (*Avena sativa*). Soils were disturbed and recent soil placement or erosion from upgradient bank stabilization work likely impacted soils within the wetland. Three secondary hydrology indicators – Saturation Visible on Aerial Imagery (C9), Geomorphic Position (D2), and FAC-Neurtal Test (D5) were apparent. Hydrology is impacted by lake water levels. The wetland boundary is gradual into hillslopes on three sides.

Photo 3 - Looking south, sample point NW-1 Wet in wetland NW-1.

Wetland NW-2 is a small, narrow wetland within the crease of the hillslope up approximately 60 feet from the shoreline of Lake Francis Case. No sample point was taken within the small wetland, but narrow leaf cattail (*Typha angusifolia*) and sedges (*Carex spp.*) were observed within the small wetland.

Photo 4 - Looking east, Wetland NW-2 in foreground.

Wetland SW-1 is located in a large, flat backwater of Lake Francis Case. Sample points SW-1 Wet and SW-2 Up were used to delineate the wetland. The herb stratum was sparse indicating likely recent inundation. Dominant hydrophytic vegetation includes FACW foxtail barley (*Hordeum jubatum*). Hydric Soil indicator Redox Depressions (F8) was observed and primary hydrology indicators Sediment Deposits (B2), Inundation Visible on Aerial Imagery (B7), and Dry Season Water Table (C2) were observed. The wetland borders Wetland SW-2 and Wetland SW-4. Wetland boundaries are very gradual to three sides and to Francis Case Lake to the east. Driftwood was observed up to 600 feet west of the lake shoreline at the edge of the wetland.

Photo 5 - Looking north, sample point SW-1 in Wetland SW-1

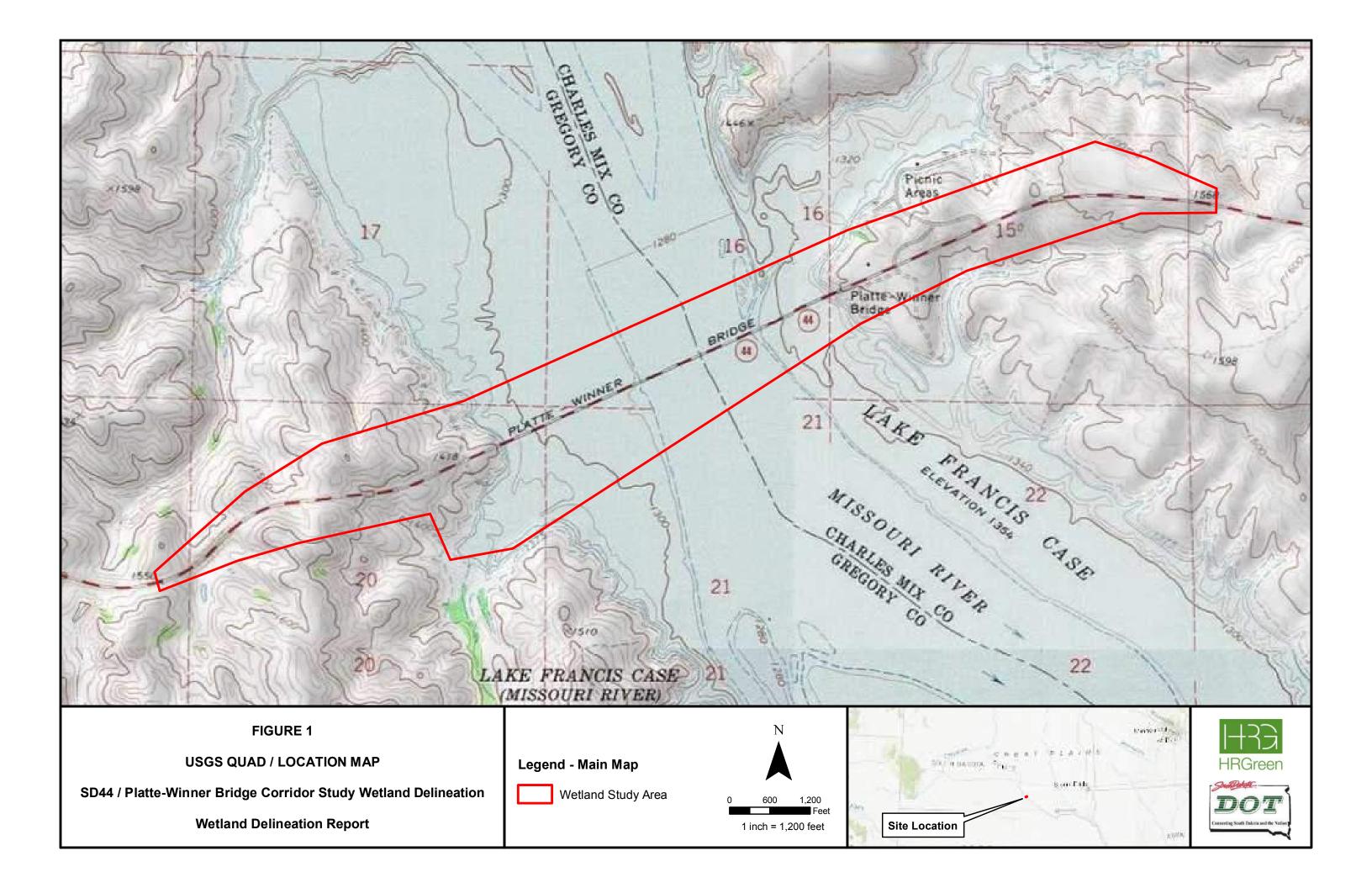
Wetland SW-2 abuts the north boundary of Wetland SW-1 and is 2-3 feet higher in elevation than Wetland SW-1. Wetland SW-2 displays a distinct change in vegetative community from flood-impacted SW-1. Sample points SW-2 Wet and SW-2 Up were used to delineate the wetland. Obligate hydrophytic vegetation includes three square rush (*Schoenoplectus pungens*) and spikerush (*Eleocharis palustris*). Hydric soil indicators A4 and Loamy Gleyed Matrix (F2) were observed. Primary hydrology indicators High Water Table (A2), Saturation (A3), B7, and C1 were observed. Wetland boundaries are distinct to upland to the north and west and SW-2 borders wetland SW-1 to the south and Lake Francis Case to the east.

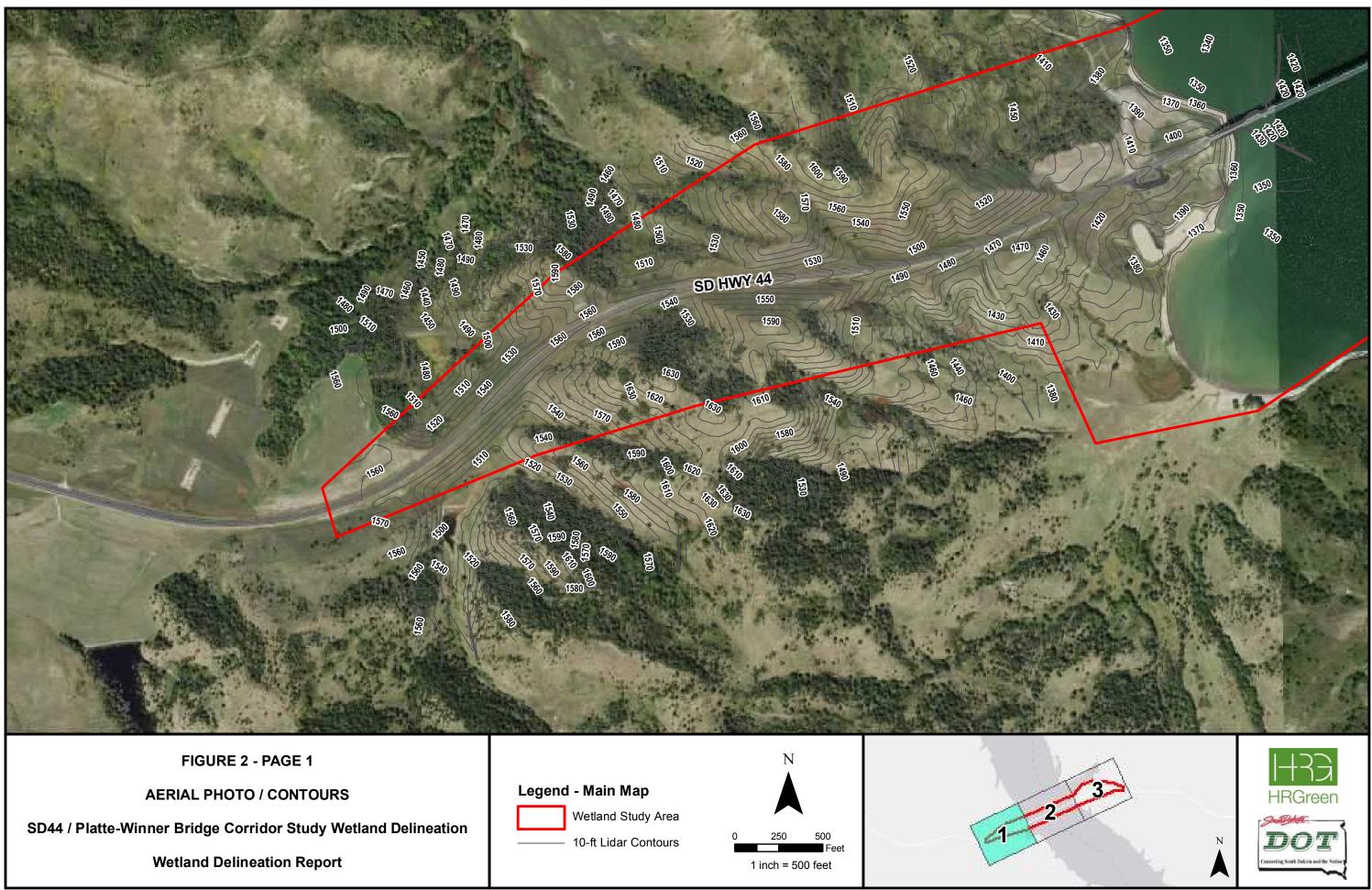
Photo 6 - Looking south, Wetland SW-2 at right of photo.

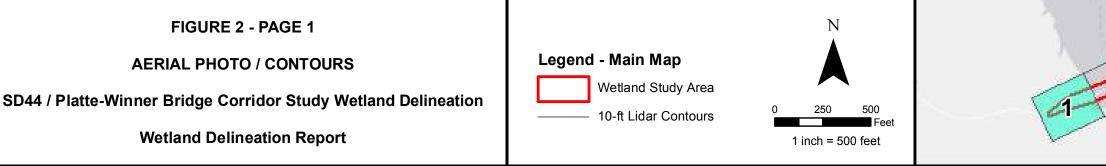
Wetland SW-3 is situated at the toe the slope off of a boat ramp parking lot and a small inlet on with the West Bridge Lake Side Use Area. Sample points SW-3 Wet and SW-2 Up were used to delineate the wetland. FACW hydrophytic vegetation includes reed canary grass and common reed (*Phagmites australis*). Hydric soil indicator F6 and primary hydrology indicators C2 and Oxidized Rhizospheres on Living Roots (C3) were observed. Wetland boundaries are distinct to hillslope to the north, south, and west and borders Lake Francis Case to the east.

Photo 7 - Looking north, Sample point SW-3 Wet.

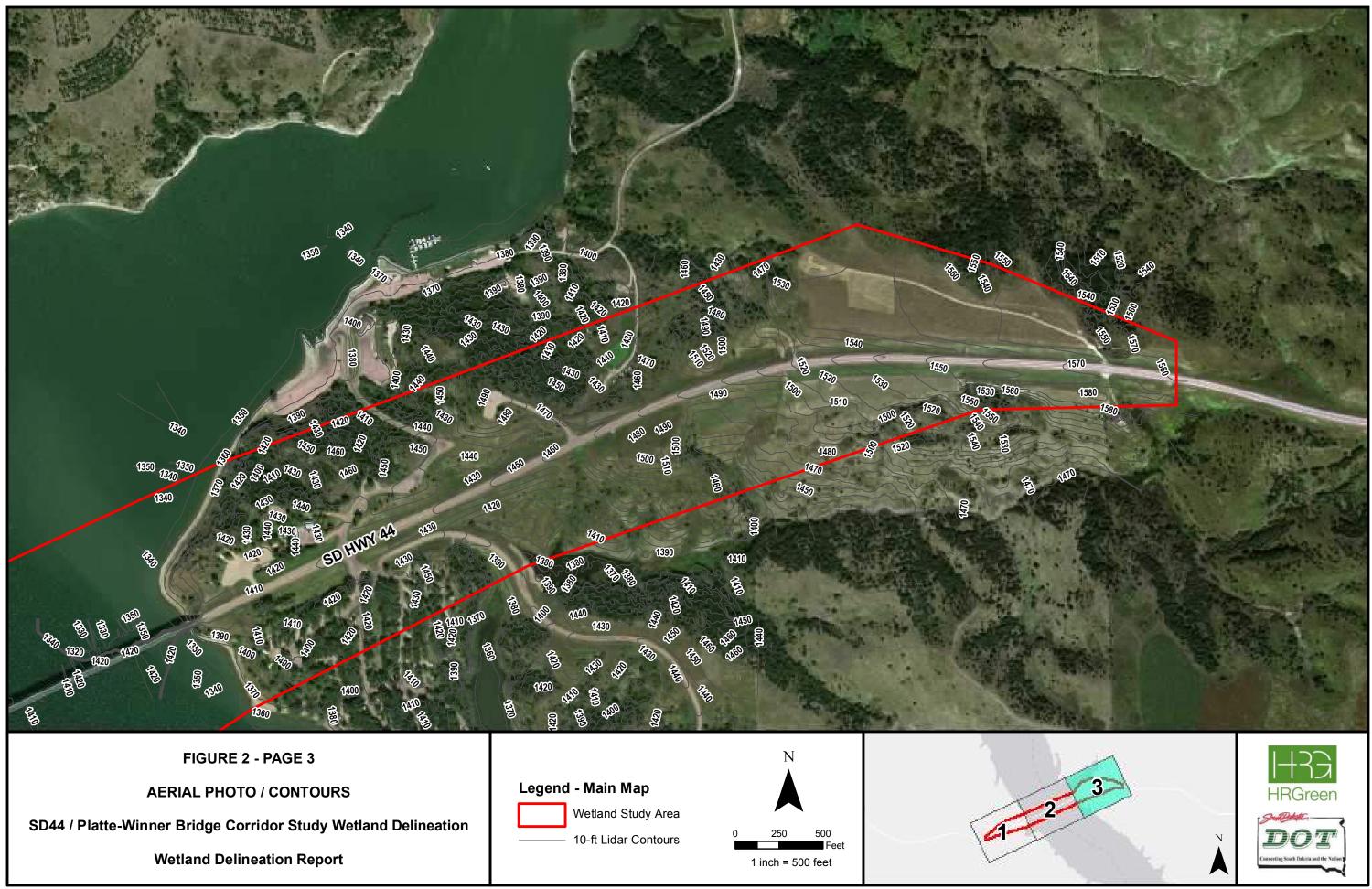
Wetland SW-4 is located within a wet drainage from approximately 390 feet south of the SD 44 ROW the toe the slope where SW-1 is located. SW-1 Wet and SW-2 Up were used to delineate the wetland. FACW hydrophytic vegetation includes reed canary grass and hybrid cattail. Hydric soil indicator F6 and primary hydrology indicators A2, A3, C2, and Oxidized Rhizospheres on Living Roots (C3) were observed. Wetland boundaries are distinct to hillslope on all sides. The wetland appears to begin in a spring or drain tile outlet at the top of the slope.

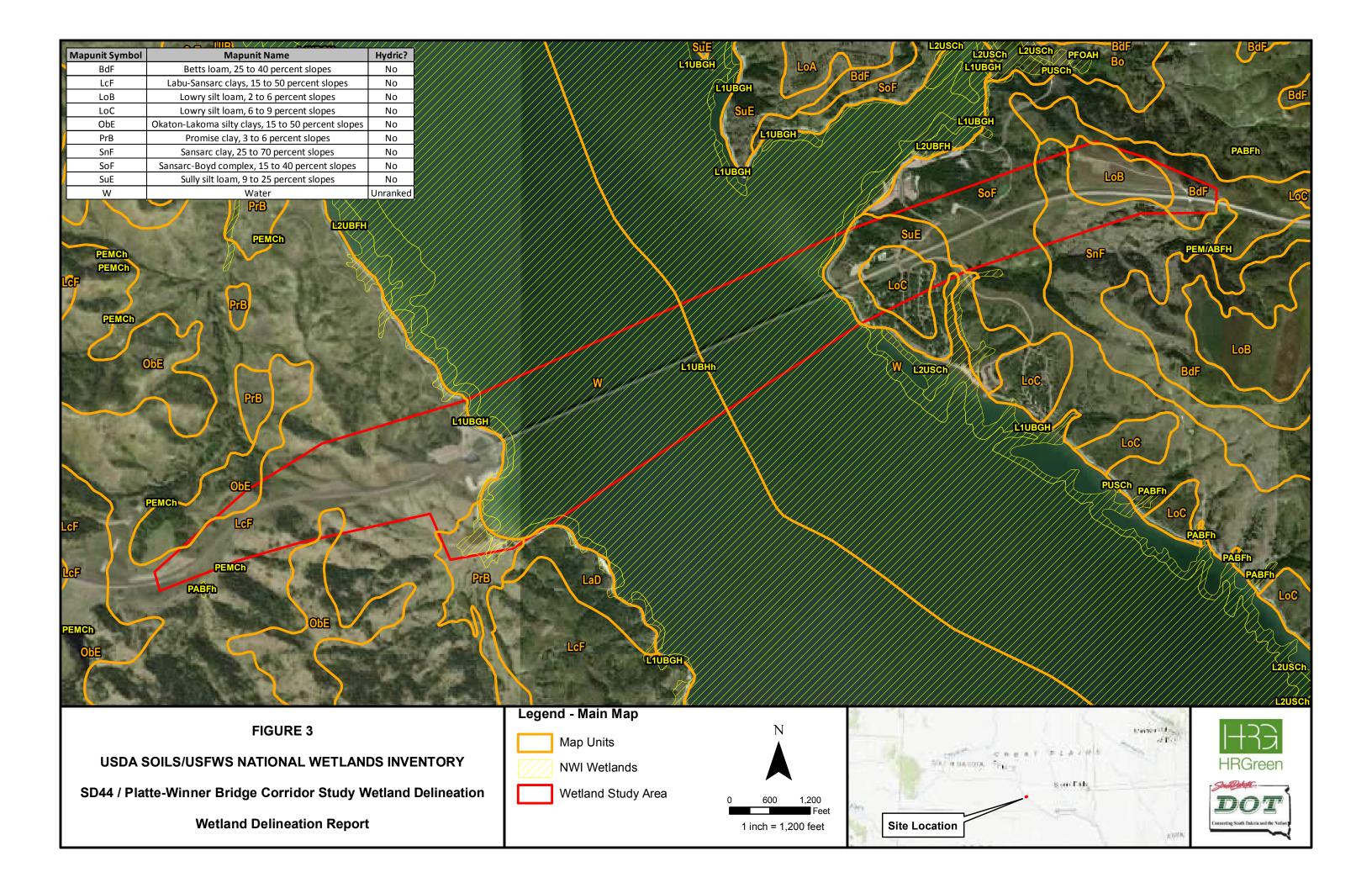


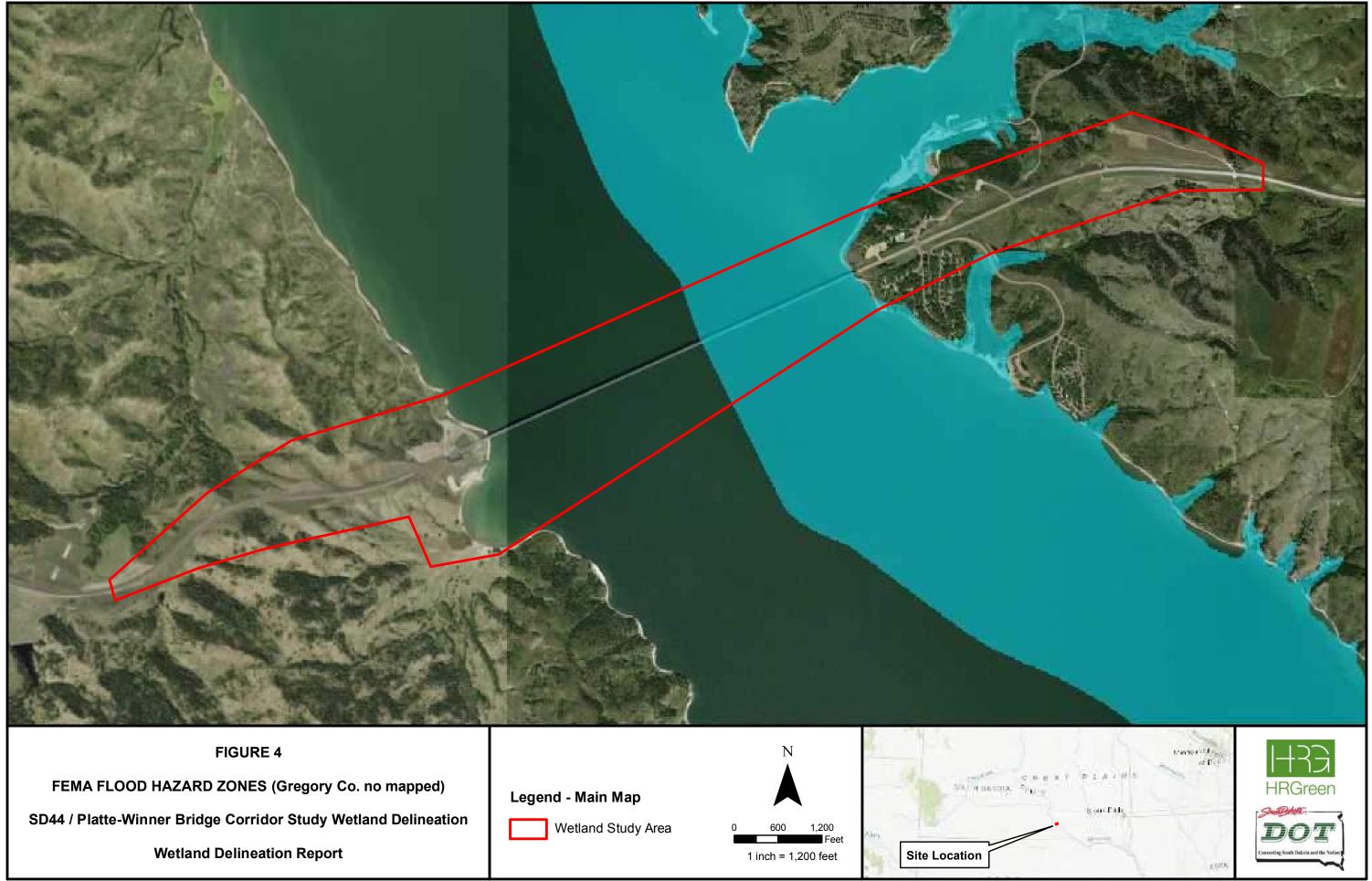

Photo 8 - Looking east, top of Wetland SW-4 with bridge in background of photo

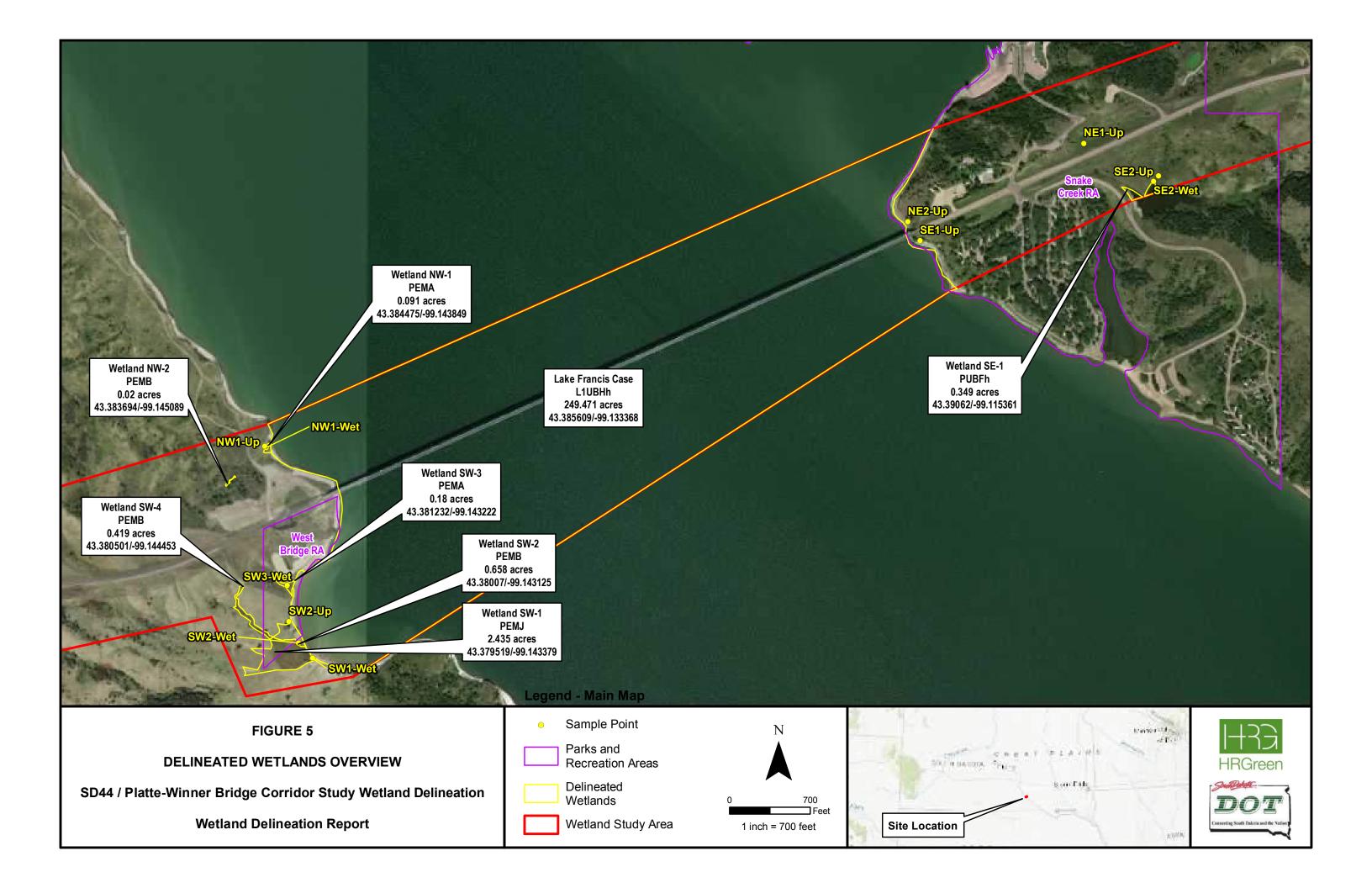

5. SUMMARY

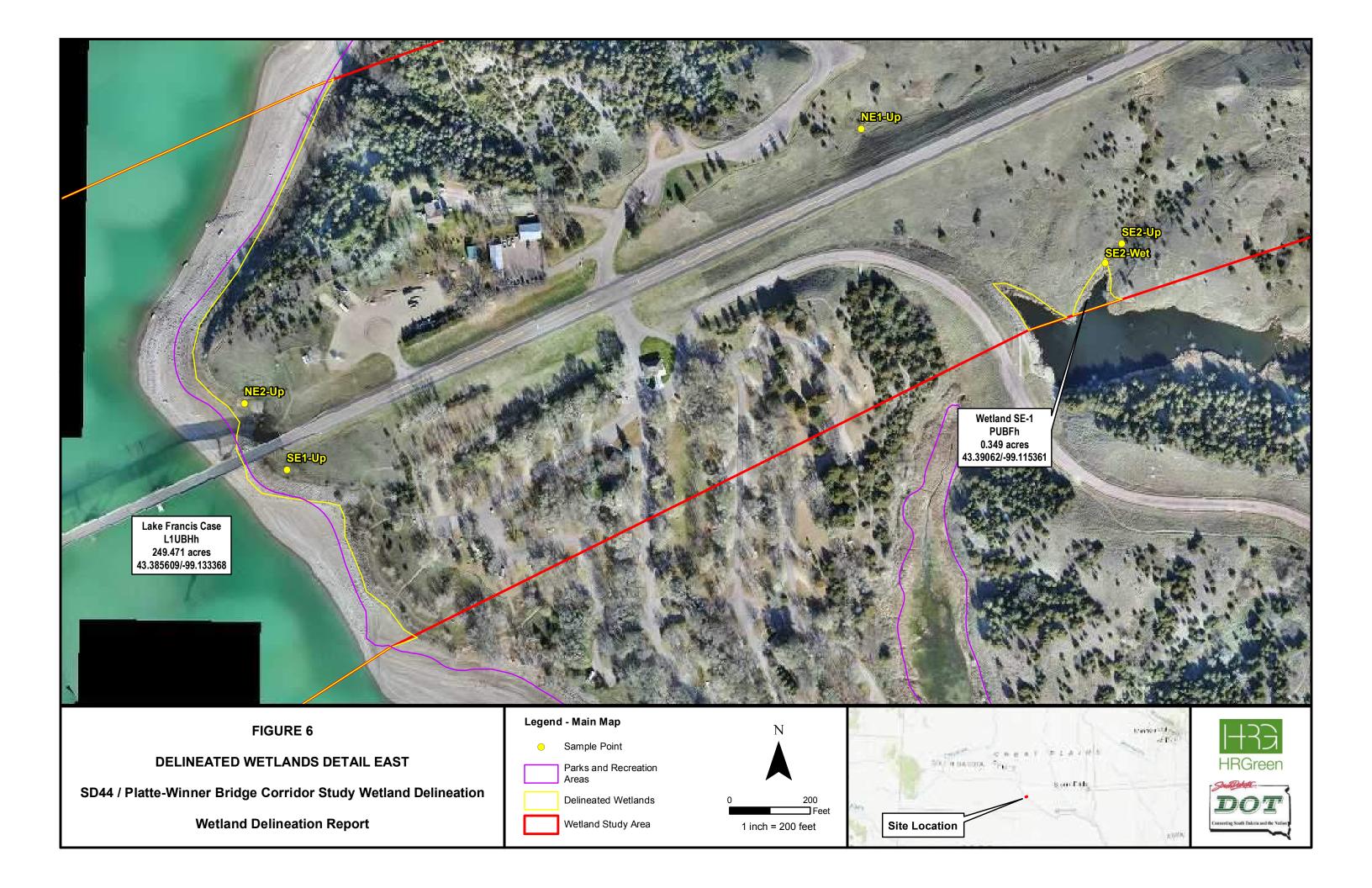
Seven wetlands acres and Lake Francis Case were identified within the study area. Wetlands were identified using the using the Routine On-Site Determination Method defined in the 1987 *Corps of Engineers Wetlands Delineation Manual* and 2010 Regional Supplement to the *Corps of Engineers Wetland Delineation Manual*: *Great Plains Region*.

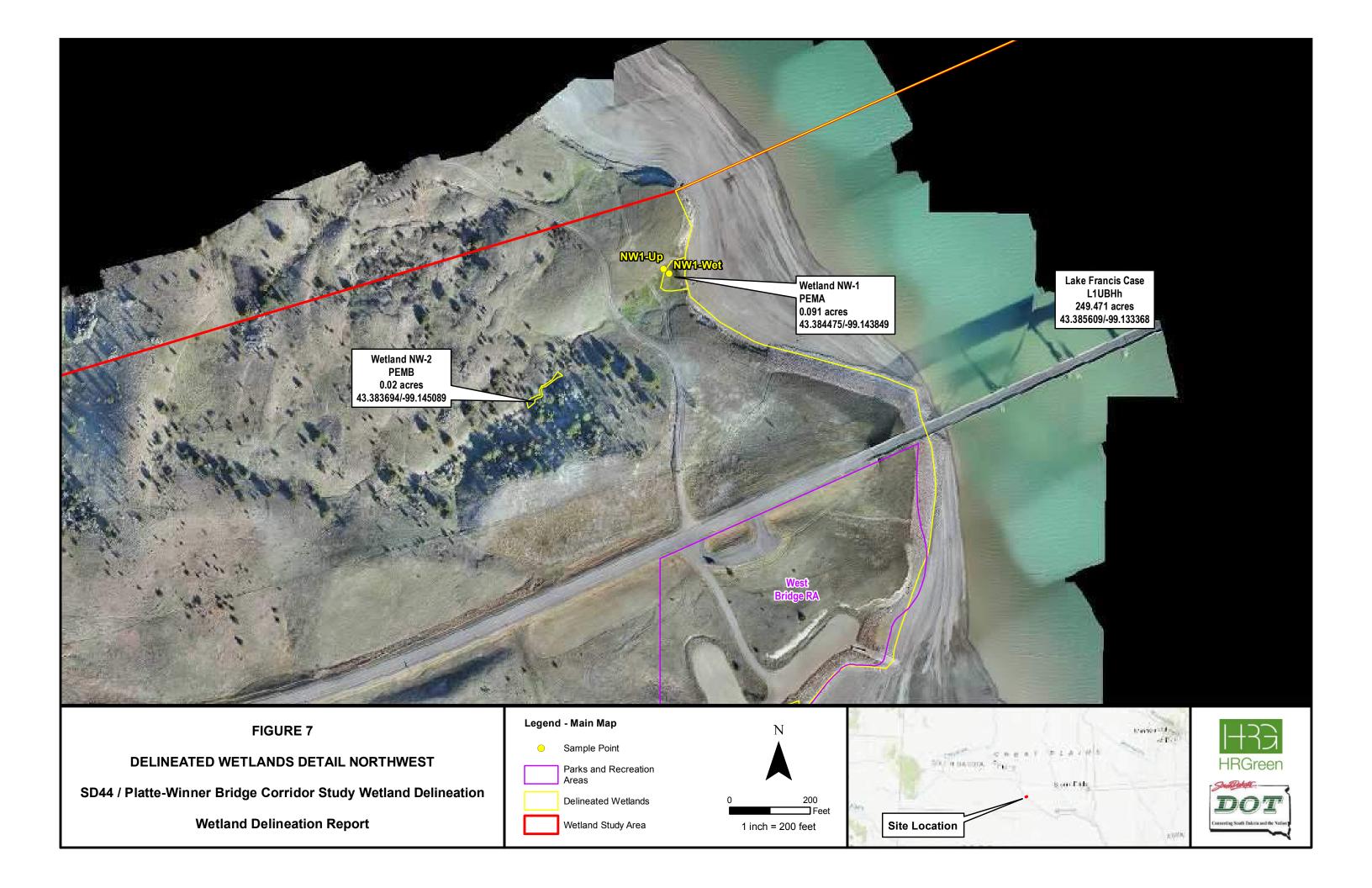

FIGURES

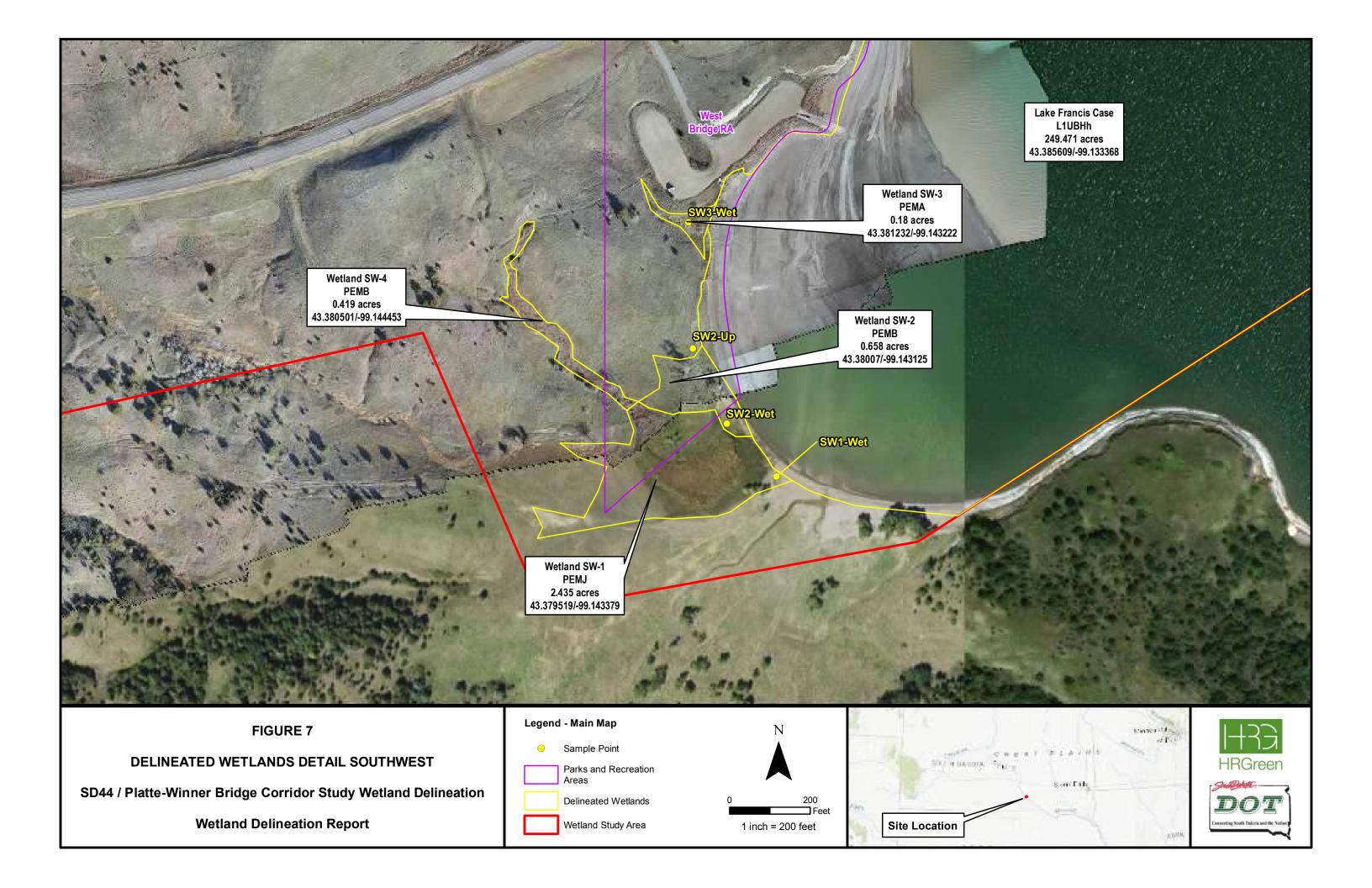












Appendix A – Wetland Data Forms

WETLAND DETERMINATION DATA FORM - Great Plains Region

Project/Site SD 44 Bridge PCN 05X0	City/Co	ounty:	Charles M	ix Sampling Date:	6/15/17
Applicant/Owner: SDDOT	-	State:	SD	Sampling Point:	NE1-Up
Investigator(s): Ted McCaslin & Pete Lovell		Secti	on, Township	o, Range: Sec 15, T	wp 99N, Rng 70W
Landform (hillslope, terrace, etc.): toe of slop	be	Local re	lief (concave	e, convex, none):	concave
LRR F Lat: 43.391779		Long:	-99.11722	4 Datum:	GCS
Soil Map Unit Name: Sully silt loam, 9 to 25 percent slope	s		√ WI C	lassification:	none
Are climatic/hydrologic conditions of the site typical for the	nis time of	the year?	Y (If	no, explain in remarks)	Slope (%): 0
Are vegetation , soil , or hydrology	, s	ignificantly of	disturbed?	Are "normal circ	umstances"
Are vegetation , soil , or hydrology	r r	naturally prol	blematic?		present? Yes
SUMMARY OF FINDINGS				(If needed, explain any	answers in remarks.)
Hydrophytic vegetation present? N					
Hydric soil present? N		Is the sa	mpled area	within a wetland?	Ν
Indicators of wetland hydrology present? N		f yes, opti	ional wetlan	d site ID:	
Remarks: (Explain alternative procedures here or in a se	enarate rer	ort)			
	parato rep	,011.)			
Sample point in bowl-shaped dep	pression	above dry	culvert. Ne	ear toe of SD44 road	slope
L VEGETATION Use scientific names of plants.					
· · ·		Dominant	Indicator	Dominance Test Work	sheet
		Species	Staus		
1		1		Number of Dominant Species are OBL, FACW, or I	
2				Total Number of Domi	nant
3				Species Across all Str	ata: <u>1</u> (B)
4				Percent of Dominant Species	that
5				are OBL, FACW, or I	FAC: 0.00% (A/B)
	=]	otal Cover		Dural to the Mark	1
Sapling/Shrub stratum (Plot size: 15)				Prevalence Index Wor Total % Cover of:	KSneet
2					x 1 = 0
3				-	$x^{2} = 0$
4				FAC species 0	x 3 = 0
5					x 4 = 480
	0 = 7	otal Cover		UPL species 0	x 5 = 0
Herb stratum (Plot size: 5)				Column totals 120	(A) <u>480</u> (B)
1 Poa pratensis	100	Y	FACU	Prevalence Index = B/A	4.00
2 Solidago canadensis	15	Ν	FACU		
3 Elymus repens	5	N	FACU	Hydrophytic Vegetation	
4				Rapid test for hydro	
5				Dominance test is >	
8				Prevalence index is	
8				Morphogical adapta supporting data in F	
9				separate sheet)	Centariks of on a
10				Problematic hydrop	hytic vegetation*
	120 = 1	otal Cover		(explain)	,
Woody vine stratum (Plot size: 30)				*Indicators of hydric soil and	d wetland hydrology must be
1				-	urbed or problematic
2			[Hydrophytic	
% Bare Ground in Herb Stratum	0 = 1	otal Cover		vegetation present?	N
Domarka: (Include abote numbers born and a second	obcot)				·
Remarks: (Include photo numbers here or on a separate Occasionally mowed	sileet)				

Profile Desc	cription: (Descri	be to the	e depth needed t	o docun	nent the	indicato	r or confirm the abse	nce of indicators.)					
Depth	Matrix		Red	dox Featu	ures								
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks					
0-24	10YR 3/2	100					clay loam						
*Tvpe: C = C	Type: C = Concentration, D = Depletion, RM = Reduced Matrix, MS = Masked Sand Grains. **Location: PL = Pore Lining, M = Matrix												
Hydric Soil Indicators: Indicators:													
-	isol (A1)		Sar	dy Gleye	d Matrix	(S4)	1 cm Muck (A	-					
	ic Epipedon (A2)			dy Redo		()		Redox (A16) (LRR F, G, H)					
	ck Histic (A3)			oped Mat			Dark Surface						
	rogen Sulfide (A4)		my Muck		l (F1)	High Plains D	epressions (F16)					
	tified Layers (A5)			my Gleye	-			de of MLRA 72 & 73)					
	n Muck (A9) (LRF			leted Ma		· /	Reduced Ver	•					
	leted Below Dark			lox Dark		(F6)	Red Parent M						
Thic	k Dark Surface (A	A12)	Dep	leted Da	rk Surfac	e (F7)	Very Shallow	Dark Surface (TF12)					
San	dy Mucky Minera	l (S1)	Rec	lox Depre	essions (F8)	Other (Explain	n in Remarks)					
2.5 c	m Mucky Peat or Pea	it (S2) (LR	R G, H) Hig	h Plains I	Depressi	ons (F16) *Indicators of hydroph	ytic vegetation and weltand hydrology must be					
5 cm	Mucky Peat or Peat	(S3) (LRR	F) (ML	RA 72 &	73 of LR	RH)	present,	unless disturbed or problematic					
Restrictive	Layer (if observe	d):											
Туре:							Hydric soil pres	sent? N					
Depth (inche	es):												
	-/												
Remarks:			0										
Solis app	ears mixed, dis	sturbea	Communicatio	on lines	and cui	vert nea	arby.						
HYDROLO)GY												
	drology Indicato	rs:											
_	cators (minimum o		required: check a	ll that an	nlv)		Secondar	Indicators (minimum of two required)					
	Water (A1)		required, check a	Salt Crus				Indicators (minimum of two required) ce Soil Cracks (B6)					
	ter Table (A2)			Aquatic I	, ,	ates (B13)		ely Vegetated Concave Surface (B8)					
Saturatio						Odor (C1		age Patterns (B10)					
	arks (B1)					r Table (C		dized Rhizospheres on Living Roots (C3)					
	t Deposits (B2)					•	· · · · · · · · · · · · · · · · · · ·	e tilled)					
Iron Dep	osits (B5)			(where r	not tiled)		Crayf	ish Burrows (C8)					
Inundatio	on Visible on Aeria	Imagery	(B7)	Presence	e of Redu	ced Iron	(C4) Satur	ation Visible on Aerial Imagery (C9)					
Water-St	tained Leaves (B9)			Thin Muo	ck Surfac	e (C7)	Geon	norphic Position (D2)					
				Other (E	xplain in I	Remarks)		Neutral Test (D5)					
							Frost	Heave Hummocks (D7) LRR (F)					
Surface wate	•	Yes	No	Х	Depth (i								
Water table		Yes	No	Х	Depth (i	,							
Saturation p		Yes	No	Х	Depth (i	nches):		Indicators of wetland					
(includes cap								hydrology present? N					
Describe rec	Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:												
Pemarka:	Remarks:												
INCIDALKS.													

WETLAND DETERMINATION DATA FORM - Great Plains Region

Project/Site SD 44 Bridge PCN 05X0	City/	County:	Charles M	ix Sampling Date:	6/15/17	
Applicant/Owner: SDDOT	-	State:	SD	Sampling Point:	NE2-Up	
Investigator(s): Ted McCaslin & Pete Lovell		Sect	ion, Township	o, Range: Sec 15, Tv	vp 99N, Rng 70V	N
Landform (hillslope, terrace, etc.): hillslope	9	Local re	lief (concave	e, convex, none):	none	
LRR F Lat: 43.389907		Long:	-99.12297	1 Datum:	GCS	
Soil Map Unit Name: Sully silt loam, 9 to 25 percent slope	es		√WI C	lassification:	none	
Are climatic/hydrologic conditions of the site typical for the	his time	of the year?	Y (If	no, explain in remarks)	Slope (%):	3
Are vegetation , soil , or hydrology	/	significantly	disturbed?	Are "normal circu	umstances"	
Are vegetation , soil , or hydrology	/	naturally pro	blematic?		present? Ye	s
SUMMARY OF FINDINGS				(If needed, explain any a	answers in rema	rks.)
Hydrophytic vegetation present? N						
Hydric soil present? N		Is the sa	mpled area	within a wetland?	N	
Indicators of wetland hydrology present? N		f yes, opt	ional wetlan	d site ID:		
Remarks: (Explain alternative procedures here or in a se	eparate r	report.)				
	-					
Sample point north of bridge, abo	ve banl	k, below two	drainage	gullies in loess bluffs a	above	
VEGETATION Use scientific names of plants						
	bsolute	Dominant	Indicator	Dominance Test Work	sheet	
	Cover	Species	Staus	Number of Dominant Species	that	
1 Populus deltoides	30	Y	FAC	are OBL, FACW, or F		(A)
2				Total Number of Domin	ant	
3				Species Across all Stra	ata: 3	(B)
4				Percent of Dominant Species		
5				are OBL, FACW, or F	AC: 33.33%	(A/B)
		= Total Cover		Drevelence Index Wer	ka ha at	
Sapling/Shrub stratum (Plot size: 15)				Prevalence Index Worl Total % Cover of:	ksneet	
2					x 1 = 0	
3				· · · · · · · · · · · · · · · · · · ·	$x^2 = 0$	
4					x 3 = 90	
5				FACU species 45	x 4 = 180	
	0	= Total Cover		UPL species 45	x 5 = 225	
Herb stratum (Plot size: 5)				Column totals 120	(A) 495	(B)
1 Bromus inermis	45	Y	UPL	Prevalence Index = B/A	= 4.13	
2 Melilotus officinalis	25	Y	FACU			
3 Solanum dulcamara	10	N	FACU	Hydrophytic Vegetatio		
4 Oenothera biennis	7	<u> </u>	FACU	Rapid test for hydro		ו
5 Nepeta cataria	3	<u>N</u>	FACU	Dominance test is > Prevalence index is		
6						
8				Morphogical adapta supporting data in R		
9				separate sheet)		
10				Problematic hydropl	nytic vegetation*	
	90	= Total Cover		(explain)	- 0	
Woody vine stratum (Plot size: 30)				*Indicators of hydric soil and	wetland hydrology i	must be
1				present, unless distu	, ,,	
2				Hydrophytic		
% Bare Ground in Herb Stratum	0	= Total Cover		vegetation present?	l	
Demontos (Include abete australia base as a f					•	
Remarks: (Include photo numbers here or on a separate	e sneet)					

Profile Desc	cription: (Descri	be to the	e depth needed t	o docum	nent the	indicato	r or confirm the absence	e of indicators.)				
Depth	Matrix		Red	dox Featu	ures			-				
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks				
0-18	10YR 3/3	100					sandy silt					
Type: C = Concentration, D = Depletion, RM = Reduced Matrix, MS = Masked Sand Grains. **Location: PL = Pore Lining, M = Matrix												
Hydric Soil Indicators: A statistical and the												
-	isol (A1)		Sar	dy Gleye	ed Matrix	(S4)	1 cm Muck (A9)	-				
	ic Epipedon (A2)			dy Redo		(-)		dox (A16) (LRR F, G, H)				
	ck Histic (A3)			oped Mat			Dark Surface (S					
	rogen Sulfide (A4)		my Muck		l (F1)	High Plains Dep	ressions (F16)				
	tified Layers (A5)			my Gleye	-			of MLRA 72 & 73)				
	n Muck (A9) (LRF			leted Ma		()	Reduced Vertic					
	leted Below Dark			lox Dark		(F6)	Red Parent Mate	-				
	k Dark Surface (A		. ,	leted Da		. ,		rk Surface (TF12)				
San	dy Mucky Minera	(S1)	Rec	lox Depre	essions (F8)	Other (Explain in					
2.5 c	m Mucky Peat or Pea	it (S2) (LRI	R G, H) Hig	n Plains I	Depressi	ons (F16) *Indicators of hydrophytic	vegetation and weltand hydrology must be				
5 cm	Mucky Peat or Peat	(S3) (LRR	F) (ML	RA 72 &	73 of LR	RH)		ess disturbed or problematic				
Restrictive	Layer (if observe	d):										
	ravel						Hydric soil preser	nt? N				
Depth (inche												
Remarks:	·											
Remarks.												
HYDROLC	OGY											
	drology Indicato	rs:										
-	cators (minimum o		required: check a	ll that an	nlv)		Secondary In	dicators (minimum of two required)				
	Water (A1)		required, check a	Salt Crus				Soil Cracks (B6)				
	ter Table (A2)			Aquatic I	. ,	ates (B13)		Vegetated Concave Surface (B8)				
Saturatio				-	n Sulfide			e Patterns (B10)				
	arks (B1)				son Wate	•	· •	ed Rhizospheres on Living Roots (C3)				
	t Deposits (B2)			-		•	ving Roots (C3) (where t					
	osits (B5)			(where r	not tiled)		•	Burrows (C8)				
Inundatio	on Visible on Aeria	Imagery	(B7)	Presence	e of Redu	ced Iron		on Visible on Aerial Imagery (C9)				
Water-St	tained Leaves (B9)			Thin Mud	ck Surfac	e (C7)	Geomor	phic Position (D2)				
				Other (E	xplain in I	Remarks)		utral Test (D5)				
							Frost-He	ave Hummocks (D7) LRR (F)				
Surface wate		Yes	No		Depth (i							
Water table		Yes	No	Х	Depth (i	,						
Saturation p		Yes	No	Х	Depth (i	nches):		dicators of wetland				
	ncludes capillary fringe) hydrology present? N											
Describe rec	Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:											
Remarks:												
i tomanto.												
I												

WETLAND DETERMINATION DATA FORM - Great Plains Region

Project/Site SD 44 Bridge PCN 05X0	City/0	County:	Charles M	ix Sampling Date:	6/15/17	
Applicant/Owner: SDDOT	_	State:	SD	Sampling Point:	SE1-Up	
Investigator(s): Ted McCaslin & Pete Lovell		Sect	ion, Township	, Range: Sec 15, Tv	vp 99N, Rng 70V	V
Landform (hillslope, terrace, etc.): hillslop	е	Local re	elief (concave	e, convex, none):	none	
LRR F Lat: 43.389454		Long:	-99.12257	2 Datum:	GCS	
Soil Map Unit Name: Sully silt loam, 9 to 25 percent slop	es		√WI C	lassification:	none	
Are climatic/hydrologic conditions of the site typical for	this time o	of the year?	Y (If	no, explain in remarks)	Slope (%):	15
Are vegetation , soil , or hydrolog	у	significantly	disturbed?	Are "normal circu	umstances"	
Are vegetation , soil , or hydrolog	у	naturally pro	blematic?		present? Yes	s
SUMMARY OF FINDINGS				(If needed, explain any	answers in remai	rks.)
Hydrophytic vegetation present? N						
Hydric soil present? N		Is the sa	mpled area	within a wetland?	Ν	
Indicators of wetland hydrology present? N		f yes, opt	tional wetlan	d site ID:		
Remarks: (Explain alternative procedures here or in a s	enarate r	enort)				
		cport.)				
Sample point on hillslop	e south	of bridge at	ove heavil	y-rip-rapped slope		
VEGETATION Use scientific names of plants	<u>,</u>					
	bsolute	Dominant	Indicator	Dominance Test Work	sheet	
	% Cover	Species	Staus	Number of Dominant Species		
1 Celtis occidentalis	25	Ý	FACU	are OBL, FACW, or F		(A)
2 Morus rubra	15	Y	FACU	Total Number of Domin	nant	
3 Juniperus virginiana	5	Ν	UPL	Species Across all Stra	ata: <u> </u>	(B)
4				Percent of Dominant Species	that	
5				are OBL, FACW, or F	AC: 0.00% ((A/B)
	45 =	= Total Cover				
Sapling/Shrub stratum (Plot size: 15)				Prevalence Index Worl Total % Cover of:	ksheet	
2					x 1 = 0	
3				· · · · · · · · · · · · · · · · · · ·	$x^{2} = 0$	
4					x 3 = 0	
5				· · · · · · · · · · · · · · · · · · ·	x 4 = 160	
	0 =	Total Cover		UPL species 102	x 5 = 510	
Herb stratum (Plot size: 5)				Column totals 142	(A) 670 ((B)
1 Bromus inermis	90	Y	UPL	Prevalence Index = B/A	= 4.72	
2 Yucca glauca	7	Ν	UPL			
3				Hydrophytic Vegetatio		
4				Rapid test for hydro		1
5		<u> </u>		Dominance test is > Prevalence index is		
7						
8				Morphogical adapta supporting data in R		
9				separate sheet)		
10		·		Problematic hydrop	hytic vegetation*	
	97 :	Total Cover		(explain)		
Woody vine stratum (Plot size: 30)				*Indicators of hydric soil and	wetland hydrology n	nust be
1				present, unless distu	irbed or problematic	
2				Hydrophytic vegetation		
% Bare Ground in Herb Stratum	0 :	= Total Cover		present?	١	
Remarks: (Include photo numbers here or on a separat	e sheet)			-		

Profile Desc	cription: (Descri	be to the	e depth needed t	o docun	nent the	indicato	r or confirm the absenc	e of indicators.)					
Depth <u>Matrix</u> Redox Features													
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks					
0-24	10 YR 3/2	100					loamy silt						
*Type: C = Concentration, D = Depletion, RM = Reduced Matrix, MS = Masked Sand Grains. **Location: PL = Pore Lining, M = Matrix													
Hydric Soil Indicators: Indicators for Problematic Hydric Soils:													
Hist	isol (A1)		Sar	dy Gleye	ed Matrix	(S4)	1 cm Muck (A9)	(LRR I, J)					
Hist	ic Epipedon (A2)		Sar	dy Redo	x (S5)		Coast Prairie Re	edox (A16) (LRR F, G, H)					
Blac	ck Histic (A3)		Stri	oped Mat	trix (S6)		Dark Surface (S	7) (LRR G)					
Hyd	lrogen Sulfide (A4)	Loa	my Muck	ky Minera	l (F1)	High Plains Dep	ressions (F16)					
Stra	atified Layers (A5)	(LRR F)	Loa	my Gleye	ed Matrix	(F2)	(LRR H outside	e of MLRA 72 & 73)					
	n Muck (A9) (LRF			leted Ma	atrix (F3)		Reduced Vertic	(F18)					
· · · ·	leted Below Dark		. ,		Surface	` '	Red Parent Mat						
	ck Dark Surface (A				rk Surfac			ark Surface (TF12)					
	dy Mucky Minera				essions (,	Other (Explain i	n Remarks)					
	m Mucky Peat or Pea				Depressi	-		c vegetation and weltand hydrology must be					
5 cm	Mucky Peat or Peat	(S3) (LRR	F) (ML	RA 72 &	73 of LR	RH)	present, ur	less disturbed or problematic					
Restrictive	Layer (if observe	d):											
Туре:							Hydric soil prese	nt? N					
Depth (inche	es):												
Remarks:													
i tomanto.													
HYDROLO	DGY												
Wetland Hy	drology Indicato	rs:											
Primary Indi	cators (minimum o	of one is	required; check a	ll that ap	ply)		Secondary Ir	ndicators (minimum of two required)					
Surface	Water (A1)		·	Salt Crus	st (B11)		Surface	Soil Cracks (B6)					
High Wa	ter Table (A2)			Aquatic I	Invertebra	ates (B13)) Sparsel	Vegetated Concave Surface (B8)					
Saturatio				Hydroge	n Sulfide	Odor (C1) Drainag	e Patterns (B10)					
Water M	arks (B1)			Dry Seas	son Wate	r Table (C	C2) Oxidiz	ed Rhizospheres on Living Roots (C3)					
Sedimer	nt Deposits (B2)			Oxidize	ed Rhizospl	neres on Li	iving Roots (C3) (where	tilled)					
·	osits (B5)			•	not tiled)			n Burrows (C8)					
	on Visible on Aeria		(B7)		e of Redu			on Visible on Aerial Imagery (C9)					
Water-St	tained Leaves (B9)				ck Surfac			rphic Position (D2)					
				Other (E	xplain in I	Remarks)		eutral Test (D5)					
0 (10	N	Na	~~~~	Dentile (1105(-11	eave Hummocks (D7) LRR (F)					
Surface wate		Yes	No	X 	Depth (in								
Water table Saturation p		Yes Yes	No No	X X	Depth (in	,	Ir	dicators of wetland					
		165	NO	^	Depth (ii	iciies).		nydrology present? N					
-	includes capillary fringe) hydrology present? N Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:												
Describered	ordeu dala (silea	in yauye	, mormoring well,	achai pi	iotos, pre		p_{0}						
Remarks:	Remarks:												
1													

Project/Site SD 44 Bridge PCN 05X0	City/	County:	Charles N	Aix Sampling Date	6/15/17
Applicant/Owner: SDDOT	State:	SD	Sampling Point	SE2-Up	
Investigator(s): Ted McCaslin & Pete Lovell		Sec	ction, Townshi	ip, Range: Sec 15, T	wp 99N, Rng 70W
Landform (hillslope, terrace, etc.): hills	lope	Local	relief (concav	e, convex, none):	concave
LRR F Lat: 43.391	·	Long:		· · ·	
Soil Map Unit Name: Sansarc-Boyd complex, 15 to 40) percent slo			Classification:	none
Are climatic/hydrologic conditions of the site typical f	-			If no, explain in remarks)	
Are vegetation , soil , or hydro		-	y disturbed?		
Are vegetation , soil , or hydro	···	naturally pr		Are "normal cire	present? Yes
SUMMARY OF FINDINGS		naturally pr	obiernatio.	(If needed, explain any	·
Hydrophytic vegetation present? N					
Hydric soil present? N		Is the s	ampled area	a within a wetland?	Ν
Indicators of wetland hydrology present? N	_	f yes, o	otional wetlar	nd site ID:	
Remarks: (Explain alternative procedures here or in Sample point in cr			ve impound	led fishing pond	
VEGETATION Use scientific names of pla	nts.				
ľ	Absolute	Dominant	Indicator	Dominance Test Wor	ksheet
Tree Stratum (Plot size: 30)	% Cover	Species	Staus	Number of Dominant Specie	s that
1 Juniperus virginiana	20	Y	UPL	are OBL, FACW, or	
2				Total Number of Dom	inant
3				Species Across all St	rata: <u>4</u> (B)
4				Percent of Dominant Specie	
5				are OBL, FACW, or	FAC: 0.00% (A/B)
	20	= Total Cove	r		
Sapling/Shrub stratum (Plot size: 15) _			Prevalence Index Wo	rksheet
1 Juniperus virginiana	5	Y	UPL	Total % Cover of:	×1- 0
2				· · ·	x 1 = 0 x 2 = 30
3				FAC species 3	$x^2 = 30$ x 3 = 9
					x = 400
°	5	= Total Cove	r		x 5 = 275
Herb stratum (Plot size: 5)			Column totals 173	
1 Elymus repens	45	Y	FACU	Prevalence Index = B//	
2 Poa pratensis	40	Y	FACU		<u> </u>
3 Hordeum jubatum	15	N	FACW	Hydrophytic Vegetati	on Indicators:
4 Cirsium arvense	15	N	FACU	Rapid test for hydro	
5 Bromus inermis	10	N	UPL	Dominance test is	
6 Apocynum cannabinum	3	N	FAC	Prevalence index i	
7				Morphogical adapt	ations* (provide
8				supporting data in	
9				separate sheet)	
10	128	= Total Cove	r	Problematic hydror (explain)	ohytic vegetation*
Woody vine stratum (Plot size: 30)			*Indicators of hydric soil an	d wetland hydrology must be turbed or problematic
2				Hydrophytic	- p
% Bare Ground in Herb Stratum	0	= Total Cove	r	vegetation	
	-			present?	N
Remarks: (Include photo numbers here or on a sepa	rate sheet)			·	

SOIL

Profile Dese	cription: (Descri	be to the	e depth needed	to docun	nent the	indicato	r or confirm the absenc	e of indicators.)	
Depth	Matrix		Re	dox Feati	ures				
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks	
0-2	10YR 3/2	100					loamy clay		
2-10	10YR 3/2	100					clay loam		
10-24	10YR 3/2	72	10YR 4/1	25			clay loam		
			10YR 4/4	3					
				<u> </u>					
	Concentration, D =	Depletio	on, RM = Reduce	d Matrix,	MS = Ma	asked Sa		n: PL = Pore Lining, M = Matrix	
-	bil Indicators:		Sa	du Clave	d Motrix	(84)		lematic Hydric Soils:	
	tisol (A1) tic Epipedon (A2)			ndy Gleye ndy Redo		(34)	1 cm Muck (A9)	edox (A16) (LRR F, G, H)	
	ck Histic (A3)			pped Mai	. ,		Dark Surface (S		
	Irogen Sulfide (A4	.)		my Muck		l (F1)	High Plains Dep		
	atified Layers (A5)			my Gleye	-			of MLRA 72 & 73)	
	n Muck (A9) (LRF			oleted Ma		. ,	Reduced Vertic	,	
	pleted Below Dark			dox Dark		(F6)	Red Parent Mate	erial (TF2)	
Thio	ck Dark Surface (A	412)	Dej	pleted Da	rk Surfac	e (F7)	Very Shallow Da	ark Surface (TF12)	
Sar	ndy Mucky Minera	l (S1)		dox Depre		,	Other (Explain in	n Remarks)	
	m Mucky Peat or Pea			h Plains I	-	-		vegetation and weltand hydrology must be	
5 cm	Mucky Peat or Peat	(S3) (LRR	F) (ML	RA 72 &	73 of LR	RH)	present, ur	less disturbed or problematic	
	Layer (if observe	ed):							
Type:							Hydric soil prese	nt? <u>N</u>	
Depth (inche	es):								
Remarks:						-			
HYDROLO	-								
-	drology Indicato						- · ·		
	cators (minimum o	of one is	required; check a					dicators (minimum of two required)	
	Water (A1) Iter Table (A2)			Salt Crus	st (B11) Invertebra	tos (P13)		Soil Cracks (B6) Vegetated Concave Surface (B8)	
Saturatio					n Sulfide			e Patterns (B10)	
	arks (B1)				son Wate			ed Rhizospheres on Living Roots (C3)	
	nt Deposits (B2)			Oxidize	ed Rhizospl	neres on Li	ving Roots (C3) (where t	illed)	
Iron Dep	oosits (B5)			(where i	not tiled)			Burrows (C8)	
	on Visible on Aeria		r (B7)	-	e of Redu			on Visible on Aerial Imagery (C9)	
Water-S	tained Leaves (B9)			-	ck Surfac			phic Position (D2)	
				Other (E	xplain in I	Remarks)		utral Test (D5) eave Hummocks (D7) LRR (F)	
Surface wate	er present?	Yes	No	Х	Depth (i	nchee).			
Water table		Yes	No	<u> </u>	Depth (ii		[
Saturation p		Yes	No		Depth (i	,	In	dicators of wetland	
(includes ca	pillary fringe)				• • •		h	ydrology present? N	
Describe rec	corded data (strea	m gauge	e, monitoring well	aerial ph	notos, pre	evious ins	spections), if available:		
D									
Remarks:									

WETLAND	DETERMINATION	DATA FORM	- Great Plai	ns Region

Project/Site SD 44 Bridge PCN 05X0		City/County:		Aix Sampling Date:	6/15/17				
Applicant/Owner: SDDOT		State: SD		Sampling Point:	SE2-Wet				
Investigator(s): Ted McCaslin & Pete Lovell		Sect	ion, Townsh	ip, Range: Sec 15, Tw	p 99N, Rng 70W				
Landform (hillslope, terrace, etc.): hills	lope			ve, convex, none):					
LRR F Lat: 43.39087	2	Long:							
Soil Map Unit Name: Sansarc-Boyd complex, 15 to 40) percent slo			Classification:	none				
Are climatic/hydrologic conditions of the site typical for this time of the year? Y (If no, explain in remarks) Slope (%): 5									
Are vegetation, soil, or hydrology significantly disturbed? Are "normal circumstances"									
Are vegetation , soil , or hydrology naturally problematic? Are normal circumstances									
SUMMARY OF FINDINGS	··· <u> </u>			(If needed, explain any a	nswers in remarks.)				
Hydrophytic vegetation present? Y									
Hydric soil present? Y	_	Is the sampled area within a wetland?							
Indicators of wetland hydrology present? Y	_	f yes, optional wetland site ID:							
	- conarato i								
Remarks: (Explain alternative procedures here or in a separate report.)									
Sample point in wetland fringe of impounded fishing pond									
VECETATION Lies acientific names of pla	nto								
VEGETATION Use scientific names of pla		Deminant	Indiantan	Dominance Test Works	hoot				
Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species	Indicator Staus						
1	/0 00001	opeoleo	Clado	Number of Dominant Species to are OBL, FACW, or FA					
2		·		Total Number of Domina					
3				Species Across all Strat					
4				Percent of Dominant Species t	hat				
5					AC: 100.00% (A/B)				
		= Total Cover							
Sapling/Shrub stratum (Plot size: 15)			Prevalence Index Work	sheet				
1				Total % Cover of:	4 00				
2				OBL species 80 x	$x = \frac{80}{40}$				
3		·		· ·	3 = 0				
5		·			4 = 20				
	0	= Total Cover		· · · · · · · · · · · · · · · · · · ·	5 = 275				
Herb stratum (Plot size: 5)			· ·	A) 415 (B)				
1 Typha X glauca	80	Y	OBL	Prevalence Index = B/A =	= 2.59				
2 Phalaris arundinacea	20	N	FACW						
3 Cirsium arvense	5	Ν	FACU	Hydrophytic Vegetation	n Indicators:				
4				Rapid test for hydrop					
5				X Dominance test is >5					
6		·		X Prevalence index is ≤	≦3.0*				
/		······································		Morphogical adaptati					
8 9				supporting data in Re separate sheet)	emarks or on a				
9 10				Problematic hydroph	vtic vegetation*				
	105	= Total Cover		(explain)	yiio vegetation				
Woody vine stratum (Plot size: 30)			``````	uotland budralans must be				
1	-			*Indicators of hydric soil and v present, unless distur	,,				
2		· ·		Hydrophytic					
% Bare Ground in Herb Stratum	0	= Total Cover		vegetation					
				present? Y	_				
Remarks: (Include photo numbers here or on a sepa	arate sheet)								

SOIL

Profile Dese	cription: (Descri	be to th	e depth needed	to docur	nent the	indicato	or or confirm the absence	of indicators.)		
Depth <u>Matrix</u> <u>Redox Features</u>					1					
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks		
0-3	10YR 3/1	100		Γ	Γ		clay loam			
3-24	10YR 3/2	90	10YR 3/6	10	1		loamy clay			
	<u> </u>	1	<u> </u>	<u> </u>	†	<u> </u>				
	<u> </u>	├───	<u> </u>	┼───	╂────	├ ───┤				
	 	├───	 	┣───	1					
	 	───	 	──		 				
	 	<u> </u>	 	┣───	<u> </u>					
	Concentration, D =	= Depleti	on, RM = Reduce	d Matrix,	MS = Ma	asked Sa		: PL = Pore Lining, M = Matrix		
Hydric So	oil Indicators:							ematic Hydric Soils:		
	tisol (A1)			ndy Gleye		(S4)	1 cm Muck (A9)			
	tic Epipedon (A2)			ndy Redo				dox (A16) (LRR F, G, H)		
	ck Histic (A3)			ipped Ma	. ,		Dark Surface (S			
	drogen Sulfide (A4			amy Muck	•	. ,	High Plains Dep			
	atified Layers (A5)			amy Gleye			•	of MLRA 72 & 73)		
	m Muck (A9) (LRF			pleted Ma	, ,		Reduced Vertic (
	pleted Below Dark		. ,	dox Dark		. ,	Red Parent Mate			
	ck Dark Surface (/ ndy Mucky Minera	,		pleted Da dox Depre			Other (Explain in	rk Surface (TF12)		
	cm Mucky Peat or Pea	-		lh Plains I	•	• •	·	,		
	n Mucky Peat or Peat n Mucky Peat or Peat			_RA 72 &				vegetation and weltand hydrology must be less disturbed or problematic		
			1) (100121		p.000,			
	Layer (if observe	∍d):								
Type:					-		Hydric soil preser	nt? <u>Y</u>		
Depth (inche	es):				-					
Remarks:						<u>. </u>				
HYDROLO										
-	drology Indicato		t - di shaalaa	11 11 1 and			O sector la			
	cators (minimum o	of one is	required; check a					dicators (minimum of two required)		
	Water (A1)			Salt Crus	· · ·	(D12		Soil Cracks (B6)		
High Wa Saturatio	ater Table (A2)			Aquatic I Hydroge				Vegetated Concave Surface (B8) e Patterns (B10)		
	larks (B1)			_ · ·	son Wate	•	· •	e Patterns (BTO) ed Rhizospheres on Living Roots (C3)		
	nt Deposits (B2)					•	iving Roots (C3) (where t			
	posits (B5)				not tiled)			Burrows (C8)		
· · ·	on Visible on Aeria	I Imagery	/ (B7)	•	e of Redu			on Visible on Aerial Imagery (C9)		
	itained Leaves (B9)		(-	ck Surfac			phic Position (D2)		
		,		-	Explain in I	. ,		utral Test (D5)		
						,		ave Hummocks (D7) LRR (F)		
Surface wate	er present?	Yes	No	Х	Depth (i	nches):				
Water table		Yes	No	Х	Depth (i					
Saturation p		Yes	No	Х	Depth (i		In	dicators of wetland		
(includes car	pillary fringe)						h	ydrology present? Y		
Describe rec	corded data (strea	ım gauge	, monitoring well	, aerial pł	notos, pre	evious ins	spections), if available:			
Remarks:										

Project/Site SD 44 Bridge PCN 05X0	City/	County:	Charles M	ix Sampling Date:	6/15/17	
Applicant/Owner: SDDOT		State:	SD	SD Sampling Point: NW1		
Investigator(s): Ted McCaslin & Pete Lovell		Sect	ion, Township	Township, Range: Sec 20, Twp 99N, Rng		
Landform (hillslope, terrace, etc.): toe of s	lope	Local re	lief (concave	e, convex, none):	concave	
LRR G Lat: 43.384497		Long:	-99.14390	4 Datum:	GCS	
Soil Map Unit Name: Labu-Sansarc clays, 15 to 50 perc	ent slopes			lassification:	L1UBGH	
Are climatic/hydrologic conditions of the site typical for	r this time of	of the year?	Y (If	no, explain in remarks)	Slope (%):	2
Are vegetation X , soil X , or hydrolo	gy X	significantly	disturbed?	Are "normal circ	umstances"	
Are vegetation , soil , or hydrolo	ду	naturally pro	blematic?		present? Ye	S
SUMMARY OF FINDINGS				(If needed, explain any	answers in rema	rks.)
Hydrophytic vegetation present? Y						
Hydric soil present? Y		Is the sa	mpled area	within a wetland?	Y	
Indicators of wetland hydrology present? Y		f yes, opt	ional wetlan	d site ID:		
Remarks: (Explain alternative procedures here or in a	senarate r	eport)				
	Separater	eport.)				
Sample point in sadd	lle-shape	d depressio	n near Fra	ncis Case Lake.		
VEGETATION Use scientific names of plant	0					
•		Deminent	Indiantan	Dominance Test Work	shoot	
	Absolute % Cover	Dominant Species	Indicator Staus			
1 Salix nigra	5	Y	FACW	Number of Dominant Species are OBL, FACW, or F		(A)
2				Total Number of Domir		()
3				Species Across all Str		(B)
4				Percent of Dominant Species	that	
5				are OBL, FACW, or F	AC: 66.67%	(A/B)
-		= Total Cover				
<u>Sapling/Shrub stratum</u> (Plot size: 15)				Prevalence Index Wor	ksheet	
1				Total % Cover of:	×1- 0	
2		<u> </u>			x 1 = 0 x 2 = 150	
3				· · · · · · · · · · · · · · · · · · ·	$x = \frac{130}{27}$	
5				-	x = 40	
· · · · · · · · · · · · · · · · · · ·	0	= Total Cover		· · · · · · · · · · · · · · · · · · ·	x 5 = 275	
Herb stratum (Plot size: 5)				Column totals 149	(A) 492	(B)
1 Phalaris arundinacea	70	Y	FACW	Prevalence Index = B/A	= 3.30	
2 Bromus inermis	50	Y	UPL			
3 Avena sativa	10	Ν	FACU	Hydrophytic Vegetation	on Indicators:	
4 Rumex crispus	7	<u>N</u>	FAC	Rapid test for hydro		า
5 Calystegia sepium	2	<u>N</u>	FAC	X Dominance test is >		
6				Prevalence index is	≤3.0*	
/				Morphogical adapta		
8 <u>_</u>				supporting data in F separate sheet)	kemarks or on a	
9 10				Problematic hydrop	hytic vegetation*	
	139	= Total Cover		(explain)	iyuc vegetation	
Woody vine stratum (Plot size: 30)				*Indicators of hydric soil and	wetland hydrology	must be
1				present, unless distu	, ,,	
2				Hydrophytic		
% Bare Ground in Herb Stratum	0	= Total Cover		vegetation	,	
				present?	<u> </u>	
Remarks: (Include photo numbers here or on a separa	ate sheet)					

Profile Des	cription: (Descri	be to th	e depth needed t	to docun	nent the	indicato	or or confirm the ab	sence of	indicators.)	
Depth	Matrix		Re	dox Feat	ures					
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture		Remarks	
0-24	10YR 3/2	100					silty clay loam	c	listurbed/compacted	
	Concentration, D =	= Depleti	on, RM = Reduce	d Matrix,	MS = Ma	asked Sa	and Grains. **Lo	cation: Pl	- = Pore Lining, M = Mat	trix
Hydric So	oil Indicators:								atic Hydric Soils:	
	tisol (A1)				ed Matrix	(S4)	1 cm Muck			
	tic Epipedon (A2)			ndy Redo					(A16) (LRR F, G, H)	
	ck Histic (A3)			pped Ma	. ,		Dark Surfa			
	drogen Sulfide (A4				ky Minera	. ,	High Plains	-		
	atified Layers (A5)				ed Matrix	(F2)	•		MLRA 72 & 73)	
	m Muck (A9) (LRF		· ·	bleted Ma			Reduced V	•	,	
	bleted Below Dark ck Dark Surface (/				Surface ark Surface	• •	Red Paren		Gurface (TF12)	
	ndy Mucky Minera	-			essions (X Other (Exp			
	cm Mucky Peat or Pea			-	Depressi	-				
	n Mucky Peat or Peat				73 of LR	-			etation and weltand hydrology disturbed or problematic	/ must be
	Layer (if observe		, (,				
Type:	Layer (II Observe	eu).					Hydric soil p	vrosont?	Y	
Depth (inche	<i>>c).</i>				-		riyune son p	nesent:		
					-					
Remarks:										_
-	•	d soils	at sample poin	t. Possi	ble over	flow ero	osion from upgrac	dient 201	15-2016 work on brid	ge
abutmen	Its									
HYDROLO	DGY									
Wetland Hy	drology Indicato	ors:								
-	cators (minimum		required; check a	III that ap	(vla		Second	larv Indica	ators (minimum of two re	auired
-	Water (A1)			Salt Cru				-	Cracks (B6)	
High Wa	ater Table (A2)			Aquatic	Invertebra	ates (B13)	parsely Veg	getated Concave Surface (E	38)
Saturatio	on (A3)			Hydroge	n Sulfide	Odor (C1) Dr	rainage Pa	atterns (B10)	
Water M	larks (B1)				son Wate	•		Oxidized RI	hizospheres on Living Roots ((C3)
	nt Deposits (B2)			-	-		`	here tilled	,	
	oosits (B5)			•	not tiled)				rrows (C8)	
	on Visible on Aeria		(B7)	-	e of Redu				isible on Aerial Imagery (C9)
vvaler-S	tained Leaves (B9))		-	ck Surfac xplain in l			•	: Position (D2) I Test (D5)	
						i temai kaj			Hummocks (D7) LRR (F	;)
Surface wat	er present?	Yes	No	Х	Depth (i	nches):			. , .	
Water table	•	Yes	No	X	Depth (i					
Saturation p		Yes	No	Х	Depth (i			Indica	ators of wetland	
-	pillary fringe)				- · ·			hydr	ology present? Y	
Describe red	corded data (strea	im gauge	e, monitoring well,	aerial ph	notos, pre	evious ins	spections), if availab	le:		
	-		-	-	-					
Remarks:										
Hydrology d	irectly impacted b	y lake wa	ater level control							

Project/Site SD 44 Bridge PCN 05X0	City/Co	unty:	Charles Mi	x Sampling Date	e: 6/15/17
Applicant/Owner: SDDOT		State:	SD	Sampling Poin	t: NW1-Up
Investigator(s): Ted McCaslin & Pete Lovell		Secti	on, Township	, Range: Sec 20,	Twp 99N, Rng 70W
Landform (hillslope, terrace, etc.): hillslope		Local re	lief (concave	, convex, none):	none
LRR <u>G</u> Lat: 43.384529	L	.ong:	-99.143958	B Datum:	GCS
Soil Map Unit Name: Labu-Sansarc clays, 15 to 50 percent			VWI CI	assification:	none
Are climatic/hydrologic conditions of the site typical for this	s time of t	he year?	Y (If	no, explain in remarks)) Slope (%): 5
Are vegetation , soil , or hydrology	si	ignificantly of	disturbed?	Are "normal ci	rcumstances"
Are vegetation , soil , or hydrology	na	aturally prol	blematic?		present? Yes
SUMMARY OF FINDINGS				(If needed, explain an	y answers in remarks.)
Hydrophytic vegetation present? N					
Hydric soil present? Y		Is the sa	mpled area	within a wetland?	N
Indicators of wetland hydrology present? Y		f yes, opti	ional wetland	site ID:	
Remarks: (Explain alternative procedures here or in a sep	arate rep	ort.)			
	-				
Sample point c	on hillslo	pe adjace	ent to depre	ession	
VEGETATION Use scientific names of plants.					
	solute D	ominant	Indicator	Dominance Test Wo	rksheet
Tree Stratum (Plot size: 30) % C		Species	Staus	Number of Dominant Speci	es that
1				are OBL, FACW, o	
2				Total Number of Dom	
3				Species Across all S	Strata: <u> </u>
				Percent of Dominant Speci	
5		otal Cover		are OBL, FACW, o	r FAC: 0.00% (A/B)
Sapling/Shrub stratum (Plot size: 15)			F	Prevalence Index Wo	orkshoot
1				Total % Cover of:	Sinder
2					x 1 = 0
3				FACW species 0	x 2 = 0
4				FAC species 0	x 3 = 0
5				FACU species 60	x 4 = 240
	0 = T	otal Cover		UPL species 55	x 5 = 275
Herb stratum (Plot size: 5)				Column totals 115	(A) <u>515</u> (B)
	60	Y	FACU	Prevalence Index = B	/A = <u>4.48</u>
	50	Y	UPL	I hadaa a hadi a Maaadad	i e e la dia ete ne i
3				Hydrophytic Vegetat	
4				Dominance test is	rophytic vegetation
6	·			Prevalence index	
7				Morphogical adap	
8				supporting data in	
9				separate sheet)	
10				-	ophytic vegetation*
	10 = T	otal Cover		(explain)	
Woody vine stratum (Plot size: 30)				2	nd wetland hydrology must be
2					sturbed or problematic
Bare Ground in Herb Stratum	0 = T	otal Cover		Hydrophytic vegetation	
	5 - 10			present?	Ν
Remarks: (Include photo numbers here or on a separate s	sheet)		I		

Profile Desc	ription: (Descri	be to the	e depth needed t	o docun	nent the	indicato	r or confirm the abser	ice of indicators.)			
Depth Matrix Redox Features											
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks			
0-24	10YR 3/2										
*Type: C = Concentration, D = Depletion, RM = Reduced Matrix, MS = Masked Sand Grains. **Location: PL = Pore Lining, M = Matrix											
	il Indicators:							blematic Hydric Soils:			
Hist	isol (A1)		Sar	idy Gleye	ed Matrix	(S4)	1 cm Muck (A				
	ic Epipedon (A2)			dy Redo		. ,	Coast Prairie	Redox (A16) (LRR F, G, H)			
	ck Histic (A3)			pped Mat			Dark Surface	(S7) (LRR G)			
Hyd	rogen Sulfide (A4)	Loa	my Muck	y Minera	l (F1)	High Plains D	epressions (F16)			
Stra	tified Layers (A5)	(LRR F)	Loa	my Gleye	ed Matrix	(F2)	(LRR H outsi	de of MLRA 72 & 73)			
1 cr	n Muck (A9) (LRF	R F, G, H) Dep	leted Ma	trix (F3)		Reduced Vert	c (F18)			
Dep	leted Below Dark	Surface	(A11) Rec	lox Dark	Surface	(F6)	Red Parent M	aterial (TF2)			
Thio	k Dark Surface (A	A12)	Dep	leted Da	rk Surfac	ce (F7)	Very Shallow	Dark Surface (TF12)			
San	dy Mucky Minera	(S1)	Rec	lox Depre	essions (F8)	Other (Explain	in Remarks)			
2.5 c	m Mucky Peat or Pea	it (S2) (LR	RG,H) Hig	h Plains I	Depressi	ons (F16) *Indicators of hydrophy	tic vegetation and weltand hydrology must be			
5 cm	Mucky Peat or Peat	(S3) (LRR	F) (ML	RA 72 &	73 of LR	R H)	present,	unless disturbed or problematic			
Restrictive	Layer (if observe	d):									
Type:		,					Hydric soil pres	ent? N			
Depth (inche	es):										
Remarks:											
Remarks.											
HYDROLO	DGY										
Wetland Hy	drology Indicato	rs:									
-	cators (minimum o		required: check a	ll that ap	(vla		Secondary	Indicators (minimum of two required)			
	Water (A1)			Salt Crus				ce Soil Cracks (B6)			
	ter Table (A2)			Aquatic I	• •	ates (B13		ely Vegetated Concave Surface (B8)			
Saturatio						Odor (C1		age Patterns (B10)			
Water M	arks (B1)			Dry Seas	son Wate	r Table (C	C2) Oxio	lized Rhizospheres on Living Roots (C3)			
Sedimer	t Deposits (B2)			Oxidize	d Rhizospl	heres on Li	iving Roots (C3) (wher	e tilled)			
· · ·	osits (B5)			(where r	not tiled)		Crayf	sh Burrows (C8)			
	on Visible on Aeria		(B7)			iced Iron		ation Visible on Aerial Imagery (C9)			
Water-St	tained Leaves (B9)			-	ck Surfac			orphic Position (D2)			
				Other (E	xplain in l	Remarks)		Neutral Test (D5) Heave Hummocks (D7) LRR (F)			
0 (10	N	NL	V	Denth (FI0SI-				
Surface wate	•	Yes	No No	X 	Depth (i						
Water table		Yes	No No		Depth (i			Indicators of wetland			
Saturation p	oillary fringe)	Yes	No	X	Depth (i	ncnes).		hydrology present? N			
-		maguag	monitoring well	aarial nh	notos pre		spections) if available:	,			
Describered		in yauye	, monitoring well,	acriai pi	iotos, pre		spections), if available:				
Remarks:											

Project/Site SD 44 Bridge PCN 05X0	City/Co	ounty:	Charles M	lix S	ampling Date:	6/15/17
Applicant/Owner: SDDOT		State:	SD	S	ampling Point:	SW1-Wet
Investigator(s): Ted McCaslin & Pete Lovell		Secti	wp 99N, Rng 70W			
Landform (hillslope, terrace, etc.): backwater		Local re	lief (concave	e, convex,	none):	none
LRR G Lat: 43.384529		Long:	-99.14237	76 D)atum:	GCS
Soil Map Unit Name: Promise clay, 3 to 6 percent slopes		·		lassificatio	n:	L1UBGH
Are climatic/hydrologic conditions of the site typical for this	s time of	the year?	Y (II	f no, explai	n in remarks)	Slope (%): 0
Are vegetation , soil , or hydrology		significantly of		-	re "normal circ	· · · · ·
Are vegetation , soil , or hydrology		naturally prol		~		present? Yes
SUMMARY OF FINDINGS				(If neede	d, explain any	answers in remarks.)
Hydrophytic vegetation present? Y						,
Hydric soil present? Y		Is the sa	mpled area	within a v	vetland?	Y
Indicators of wetland hydrology present? Y			ional wetlan			
Remarks: (Explain alternative procedures here or in a sep	barate re	port.)				
Occasionally floc	ded ba	ckwater of	Francis C	ase Lake		
VEGETATION Use scientific names of plants.				Deminer		
	solute l Cover	Dominant Species	Indicator Staus		nce Test Worl	
1 Salix amygdaloides	5	Y	FACW		Dominant Species OBL, FACW, or	
2	<u> </u>	· ·	17.01		umber of Domi	()
3					s Across all St	
4					Dominant Species	()
5						FAC: 100.00% (A/B)
	5 =	Total Cover				
Sapling/Shrub stratum (Plot size: 15)				Prevaler	nce Index Wo	ksheet
1				Total % (Cover of:	
2				OBL spe		x 1 =
3				FACW s		x 2 = <u>104</u>
4				FAC spe		x 3 = 51
5	0 =	Total Cover		FACU sp UPL spe		x 4 = 40 x 5 = 275
Herb stratum (Plot size: 5)				Column t		(A) 470 (B)
/	40	Y	FACW		ce Index = B/A	· · · · · · · · · · · · · · · · · · ·
	40 10	<u> </u>	FACW	Prevalen		<u> </u>
3 Xanthium strumarium	7		FAC	Hydroph	vtic Vegetati	on Indicators:
4 Phleum pratense	3		FACU			ophytic vegetation
5 Melilotus officinalis	3	N	FACU		inance test is :	
6 Persicaria maculosa	2	N	FACW		alence index is	
7 Polygonum aviculare	2	Ν	FACU	Morn	hogical adapt	ations* (provide
8 Thlaspi arvense	2	Ν	FACU			Remarks or on a
9				sepa	rate sheet)	
10						hytic vegetation*
	69 =	Total Cover		(expl	ain)	
Woody vine stratum (Plot size: 30)						d wetland hydrology must be
1				-		urbed or problematic
2	<u> </u>	Total Cause		-	ophytic tation	
% Bare Ground in Herb Stratum	0 =	Total Cover		prese		Y
Remarks: (Include photo numbers here or on a separate s	sheet)					
sparsely vegetated	,					

SOIL

Profile Desc	cription: (Descri	be to the	e depth needed t	o docun	nent the	indicato	r or confirm the absence	e of indicators.)			
Depth	Matrix		Red	dox Feat	ures						
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks			
0-4	10YR 3/2	100					clay loam	gravelly			
4-12	10YR 3/2	65	G1 4/N	30	D	М	clay loam	some gravel			
			7.5YR 4/6	5	C	PL					
10.04											
12-24	10YR 3/2	55	G1 4/N	40	D	М	clay				
			10YR 3/6	5	С	М					
*Type: C = Concentration, D = Depletion, RM = Reduced Matrix, MS = Masked Sand Grains. **Location: PL = Pore Lining, M = Matrix											
*Type: C = C	Concentration, D =	Depletio	on, RM = Reduce	d Matrix,	MS = Ma	asked Sa	Ind Grains. **Location	: PL = Pore Lining, M = Matrix			
Hydric So	il Indicators:						Indicators for Proble	ematic Hydric Soils:			
Hist	isol (A1)		Sar	dy Gleye	ed Matrix	(S4)	1 cm Muck (A9)	(LRR I, J)			
Hist	ic Epipedon (A2)		Sar	idy Redo	x (S5)			dox (A16) (LRR F, G, H)			
Blac	ck Histic (A3)		Stri	pped Ma	trix (S6)		Dark Surface (S7	7) (LRR G)			
Hyd	lrogen Sulfide (A4)	Loa	my Muck	ky Minera	l (F1)	High Plains Depr	essions (F16)			
	atified Layers (A5)				ed Matrix	(F2)	(LRR H outside	of MLRA 72 & 73)			
	n Muck (A9) (LRF			leted Ma			Reduced Vertic (,			
	leted Below Dark				Surface	· ,	Red Parent Mate				
	ck Dark Surface (/	,			rk Surfac	. ,		rk Surface (TF12)			
	dy Mucky Minera	• •			essions (,	Other (Explain in	,			
	m Mucky Peat or Pea				Depressi			vegetation and weltand hydrology must be			
5 cm	Mucky Peat or Peat	(S3) (LRR	F) (ML	.RA / 2 &	73 of LR	RH)	present, uni	ess disturbed or problematic			
	Layer (if observe	ed):									
Туре:							Hydric soil presen	t? <u>Y</u>			
Depth (inche	es):										
Remarks:											
HYDROLO	DGY										
Wetland Hy	drology Indicato	rs:									
Primary India	cators (minimum o	of one is	required; check a	ll that ap	<u>ply)</u>		Secondary Inc	dicators (minimum of two required)			
Surface	Water (A1)			Salt Crus	st (B11)			Soil Cracks (B6)			
High Wa	ter Table (A2)			Aquatic	Invertebra	ates (B13)) Sparsely	Vegetated Concave Surface (B8)			
Saturatio	on (A3)				n Sulfide			e Patterns (B10)			
	arks (B1)		Х		son Wate	•	·	d Rhizospheres on Living Roots (C3)			
	t Deposits (B2)						iving Roots (C3) (where ti	,			
·	osits (B5)		(D7)	•	not tiled)			Burrows (C8)			
	on Visible on Aeria tained Leaves (B9)		(B7)		e of Redu			on Visible on Aerial Imagery (C9) ohic Position (D2)			
valer-Si	laineu Leaves (D9)			-	ck Surfac xplain in l			utral Test (D5)			
						(Cillarks)		ave Hummocks (D7) LRR (F)			
Surface wate	er present?	Yes	No	х	Depth (i	nches).					
Water table		Yes	X No		Depth (i	,	27				
Saturation p		Yes			Depth (i	,		dicators of wetland			
(includes car								ydrology present? Y			
-		m aauae	. monitorina well.	aerial ph	notos, pre	evious ins	spections), if available:				
		3	,				,,,				
Remarks:											

Project/Site SD 44 Bridge PCN 05X0	City/County:	Charles N	/ix Sampling Date	: 6/15/17
Applicant/Owner: SDDOT	State	e: SD	Sampling Point	SW2-Wet
Investigator(s): Ted McCaslin & Pete Lovell		Section, Townsh	ip, Range: Sec 20, 1	wp 99N, Rng 70W
Landform (hillslope, terrace, etc.): toe of slop	be Loc	al relief (concav	ve, convex, none):	none
LRR G Lat: 43.379852	Long:	-99.1428	39 Datum:	GCS
Soil Map Unit Name: Promise clay, 3 to 6 percent slopes			Classification:	L1UBGH
Are climatic/hydrologic conditions of the site typical for the	nis time of the yea	r? Y (If no, explain in remarks)	Slope (%): 0
Are vegetation , soil , or hydrology	significa	ntly disturbed?	Are "normal cire	cumstances"
Are vegetation , soil , or hydrology	naturally	problematic?		present? Yes
SUMMARY OF FINDINGS			(If needed, explain any	answers in remarks.)
Hydrophytic vegetation present? Y				
Hydric soil present? Y	Is the	e sampled area	a within a wetland?	Y
Indicators of wetland hydrology present? Y	f yes,	, optional wetlar	nd site ID:	
Remarks: (Explain alternative procedures here or in a se	parate report)			
Toe of w	et draw from sp	oring upgradie	ent	
VEGETATION Use scientific names of plants.				
•		nt Indicator	Dominance Test Wor	kshoot
	osolute Dominar Cover Species			
1	opener opener		Number of Dominant Specie are OBL, FACW, or	
2			Total Number of Dom	()
3			Species Across all St	
4			Percent of Dominant Specie	es that
5				FAC: 100.00% (A/B)
_	5 = Total Co	ver		
<u>Sapling/Shrub stratum</u> (Plot size: 15)			Prevalence Index Wo	rksheet
1			Total % Cover of:	
3				x 1 = 117 x 2 = 104
3			FAC species 8	$x^{2} = 104$ x 3 = 24
5			FACU species 0	$x = \frac{1}{x^2 + 1}$
	0 = Total Co	ver	UPL species 55	x 5 = 275
Herb stratum (Plot size: 5)			Column totals 232	(A) 520 (B)
1 Schoenoplectus pungens	80 Y	OBL	Prevalence Index = B//	A = 2.24
2 Eleocharis palustris	25 N	OBL		
3 Typha angustifolia	10 N	OBL	Hydrophytic Vegetati	on Indicators:
4 Hordeum jubatum	5 N	FACW	Rapid test for hydr	
5 Rumex crispus	3 N	FAC	X Dominance test is	
6 Xanthium strumarium	3 N	FAC	X Prevalence index i	s ≤3.0*
7 Plantago lanceolata	2 N	FAC	Morphogical adapt	
8 Schoenoplectus tabernaemontani 9 Ranunculus hispidus	2 N 2 N	OBL FACW	supporting data in separate sheet)	Remarks or on a
10	<u> </u>	FACW	Problematic hydro	nhytic vogstation*
··	132 = Total Co	ver	(explain)	
Woody vine stratum (Plot size: 30)	<u> </u>			ad watland budralagy must be
1			-	nd wetland hydrology must be turbed or problematic
2			Hydrophytic	
% Bare Ground in Herb Stratum	0 = Total Co	ver	vegetation	V
			present?	Y
Remarks: (Include photo numbers here or on a separate	sheet)			

SOIL

Profile Desc	ription: (Descri	be to the	e depth r	needed t	o docun	nent the	indicato	r or confirm the absenc	e of indicators.)
Depth Matrix Redox Features									
(Inches)	Color (moist)	%	Color	moist)	%	Type*	Loc**	Texture	Remarks
0-2	10YR 3/2	100						clay loam	
2-5	G1 4/10Y	85	G1 2	2.5/N	10	D	М	clay loam	soft, almost all clay
			10YI	R 3/4		С	М		
5-10	G1 2.5/N	93	G1 4	/10Y	7	D	М	mucky loam	tacky
10-18	G1 2.5/N	100						mucky loam	
18-24	G1 2.5/N	100						mucky clay	
10 2 1	012.0/1	100						maoky olay	
*Turnet C = C	Concentration D -	Donlatio		Deduce	d Matrix		acked Ce	nd Oraina **! agation	N DL - Dara Lining M - Matrix
	Concentration, D =	Depletic	on, Rivi =	Reduce	d Matrix,	MS = Ma	asked Sa		n: PL = Pore Lining, M = Matrix ematic Hydric Soils:
				Sor	dy Clove	d Matrix	(84)	1 cm Muck (A9)	-
	isol (A1) ic Epipedon (A2)				idy Gleye idy Redo		(34)		dox (A16) (LRR F, G, H)
	ck Histic (A3)				pped Mat	. ,		Dark Surface (S	
	rogen Sulfide (A4	0			my Muck	. ,	l (F1)	High Plains Dep	
· · · ·	tified Layers (A5)	,			my Gleye	•	. ,		of MLRA 72 & 73)
	n Muck (A9) (LRF				leted Ma		. (. =)	Reduced Vertic	,
	leted Below Dark		-		lox Dark		(F6)	Red Parent Mate	
	k Dark Surface (A		· · ·		leted Da		. ,		irk Surface (TF12)
San	dy Mucky Minera	l (S1)		Rec	lox Depre	essions (F8)	Other (Explain ir	
2.5 c	m Mucky Peat or Pea	at (S2) (LR	R G, H)	Hig	h Plains I	Depressi	ons (F16) *Indicators of hydrophytic	vegetation and weltand hydrology must be
5 cm	Mucky Peat or Peat	(S3) (LRR	F)	(ML	RA 72 &	73 of LR	R H)		less disturbed or problematic
Restrictive	Layer (if observe	ed):							
Туре:		,						Hydric soil prese	nt? Y
Depth (inche	s):					•			
Remarks:						•			
Remarks.									
HYDROLC)GY								
	drology Indicato	rs:							
-	cators (minimum o		required	check a	ll that an	nlv)		Secondary In	dicators (minimum of two required)
-	Water (A1)		required,	check a	Salt Crus				Soil Cracks (B6)
	ter Table (A2)				-	` '	ates (B13)		Vegetated Concave Surface (B8)
X Saturatio							Odor (C1		e Patterns (B10)
Water M	arks (B1)						r Table (C	-	ed Rhizospheres on Living Roots (C3)
Sedimen	t Deposits (B2)				Oxidize	d Rhizospl	heres on Li	ving Roots (C3) (where t	illed)
Iron Dep	osits (B5)				(where i	not tiled)		Crayfish	Burrows (C8)
X Inundatio	on Visible on Aeria	I Imagery	(B7)		Presence	e of Redu	iced Iron	(C4) Saturati	on Visible on Aerial Imagery (C9)
Water-St	ained Leaves (B9))			Thin Mu	ck Surfac	e (C7)		phic Position (D2)
					Other (E	xplain in l	Remarks)		utral Test (D5)
								Frost-He	eave Hummocks (D7) LRR (F)
Surface wate	•	Yes		No	Х	Depth (i		I	
Water table		Yes	<u> </u>	No		Depth (i	,	<u> </u>	dicators of wetland
Saturation pr (includes cap		Yes	Х	No		Depth (i	ncnes):	÷	ydrology present? Y
-									yarology present:
Describe rec	orded data (strea	m gauge	, monitor	ing well,	aerial pr	iotos, pre	evious ins	spections), if available:	
Remarks:									

Project/Site SD 44 Bridge PCN 05X0	City/	County:	Charles M	Mix	Sampling Date	e: 6/15/17	
Applicant/Owner: SDDOT		State:	SD		- Sampling Point	t: SW2-Up	
Investigator(s): Ted McCaslin & Pete Lovell		Sect	ion, Townsh	ip, Range:	- Sec 20, ⁻	Twp 99N, Rng 70W	
Landform (hillslope, terrace, etc.): hillslop	e	Local re	lief (concav	/e, convex	, none):	none	
LRR G Lat: 43.380364		Long:	-99.1428	39	Datum:	GCS	
Soil Map Unit Name: Promise clay, 3 to 6 percent slopes	3		NMI (Classificat	ion:	none	
Are climatic/hydrologic conditions of the site typical for	this time	of the year?	Y (If no, expl	ain in remarks)	Slope (%): 7	
Are vegetation , soil , or hydrolog	iy	significantly	disturbed?		Are "normal cir	cumstances"	
Are vegetation , soil , or hydrolog	лу <u>— — — — — — — — — — — — — — — — — — —</u>	naturally pro	blematic?			present? Yes	
SUMMARY OF FINDINGS				(If need	led, explain an	y answers in remarks.)	
Hydrophytic vegetation present? N							
Hydric soil present? N		Is the sa	mpled area	a within a	wetland?	Ν	
Indicators of wetland hydrology present? N		f yes, opt	ional wetlar	nd site ID:			
Remarks: (Explain alternative procedures here or in a s	separate r	eport)					
Remarks. (Explain alternative procedures here of in a s	separater	eport.)					
Sample	e point c	on rise abov	e lakesho	re			
VECETATION Lies asigntific names of plants							
VEGETATION Use scientific names of plants		Deminent	Indiantan	Domin	ance Test Wo	rkshoot	_
	Absolute % Cover	Dominant Species	Indicator Staus				
1		opooloo	Clado		of Dominant Specie are OBL, FACW, or		
2		<u> </u>			Number of Dom	(')	
3		·			cies Across all S		
4				Percent of	of Dominant Specie	es that	
5					are OBL, FACW, or)
_	5	= Total Cover					
Sapling/Shrub stratum (Plot size: 15)					ence Index Wo	orksheet	
					Cover of:	4	
2				OBL sp		x 1 = 0	
3				FAC vv	species 52 becies 14	x 2 = 104 x 3 = 42	
		<u> </u>			species 75	$x = \frac{42}{300}$	
	0	= Total Cover		UPL sp	-	x5 = 275	
Herb stratum (Plot size: 5)					n totals 196	(A) 721 (B)	
1 Elymus repens	70	Y	FACU	Prevale	ence Index = B/		
2 Bromus inermis	50	Y	UPL				
3 Bromus ciliatus	10	N	FAC	Hydrop	ohytic Vegetat	ion Indicators:	_
4 Melilotus officinalis	5	Ν	FACU	Ra	pid test for hydi	rophytic vegetation	
5 Calystegia sepium	4	N	FAC	Do	minance test is	>50%	
6				Pre	evalence index	is ≤3.0*	
7						tations* (provide	
8					porting data in parate sheet)	Remarks or on a	
9 10		·				abutia vagatatian*	
	139	= Total Cover			plain)	phytic vegetation*	
Woody vine stratum (Plot size: 30)				I — `	• •	ad constant boots to be a set	
1						nd wetland hydrology must b sturbed or problematic	е
2				-	drophytic	•	
% Bare Ground in Herb Stratum	0	= Total Cover		-	getation		
				pre	sent?	N	
Remarks: (Include photo numbers here or on a separat	te sheet)						

SOIL

Profile Dese	cription: (Descri	be to th	e depth needed	to docun	nent the	indicato	or or confirm the absen	ce of indicators.)
Depth	Matrix		Re	dox Feat	ures			
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks
0-5	10YR 3/2	97	10YR 3/6	3	С	М	silty clay loam	
5-24	5Y 5/1	95	2.5YR 8/4	5	С	М	silty loam	
*Type: C = C	Concentration, D =	= Depleti	on, RM = Reduce	d Matrix,	MS = Ma	asked Sa	and Grains. **Location	on: PL = Pore Lining, M = Matrix
Hydric So	il Indicators:							blematic Hydric Soils:
	tisol (A1)				ed Matrix	(S4)	1 cm Muck (A9	
	tic Epipedon (A2)			ndy Redo	. ,			Redox (A16) (LRR F, G, H)
	ck Histic (A3)			pped Ma	. ,		Dark Surface (
	lrogen Sulfide (A4			-	ky Minera			pressions (F16)
	atified Layers (A5)				ed Matrix	: (F2)	•	le of MLRA 72 & 73)
	m Muck (A9) (LRF				atrix (F3)	(= -)	Reduced Verti	
	bleted Below Dark				Surface	. ,	Red Parent Ma	. ,
	ck Dark Surface (ark Surfac			Dark Surface (TF12)
	ndy Mucky Minera				essions (Depressi	,	Other (Explain	,
	cm Mucky Peat or Pea n Mucky Peat or Peat		· _ ·		73 of LR	•		tic vegetation and weltand hydrology must b unless disturbed or problematic
		. ,.		INA 72 0			present, t	
	Layer (if observe	ed):						
Type:					-		Hydric soil pres	ent? N
Depth (inche	es):				-			
Remarks:								
Possible	lake sediments	s in prof	file					
HYDROLO								
	drology Indicato	vre '						
-			required: abook a	ll that an			Casandan	Indiantara (minimum of two required
-	<u>cators (minimum (</u> Water (A1)	or one is	required, check a	Salt Cru				Indicators (minimum of two required e Soil Cracks (B6)
	iter Table (A2)				Invertebra	tes (R13)		ly Vegetated Concave Surface (B8)
Saturatio					en Sulfide			ige Patterns (B10)
	arks (B1)				son Wate			ized Rhizospheres on Living Roots (C3)
	nt Deposits (B2)			Oxidize	ed Rhizospl	heres on Li	iving Roots (C3) (where	e tilled)
	osits (B5)			(where	not tiled)		Crayfi	sh Burrows (C8)
Inundatio	on Visible on Aeria	I Imagery	(B7)	Presenc	e of Redu	iced Iron	(C4) Satura	tion Visible on Aerial Imagery (C9)
Water-S	tained Leaves (B9))		Thin Mu	ck Surfac	e (C7)	Geom	orphic Position (D2)
				Other (E	Explain in I	Remarks)		leutral Test (D5)
							Frost-	Heave Hummocks (D7) LRR (F)
Surface wate		Yes	No	X	Depth (i			
Water table	•	Yes	No	<u> </u>	Depth (i			la d'ante a constant de la d
Saturation p		Yes	No	Х	_Depth (i	ncnes):	'	Indicators of wetland hydrology present? N
	pillary fringe)							hydrology present? N
Describe rec	corded data (strea	un gauge	e, monitoring well,	aerial pl	notos, pre	evious ins	spections), if available:	
Remarks:								
	it above inundatio	n or satu	ration in flood lev	el aerial	photos.			
1		,						

Project/Site SD 44 Bridge PCN 05X0	City/	County:	Charles N	/lix Sa	mpling Date:	6/15/17	
Applicant/Owner: SDDOT		State:	SD	Sa	mpling Point:	SW3-We	t
Investigator(s): Ted McCaslin & Pete Lovell		Sect	ion, Townsh	ip, Range:	Sec 20, Tw	p 99N, Rng 70	W
Landform (hillslope, terrace, etc.): backwater/to	e of slope	Local re	elief (concav	/e, convex, n	one):	none	
LRR G Lat: 43.381222		Long:	-99.143	2 Da	atum:	GCS	
Soil Map Unit Name: Labu-Sansarc clays, 15 to 50 per	cent slopes			Classification	:	none	
Are climatic/hydrologic conditions of the site typical for	r this time of	of the year?	Y (lf no, explain	in remarks)	Slope (%):	0
Are vegetation , soil , or hydrolo	gy	significantly	disturbed?	Are	e "normal circu	mstances"	
Are vegetation , soil , or hydrolo	gy	naturally pro	blematic?			present? Ye	es
SUMMARY OF FINDINGS				(If needed	, explain any a	nswers in rema	arks.)
Hydrophytic vegetation present? Y							
Hydric soil present? N		Is the sa	mpled area	a within a we	etland?	Ν	
Indicators of wetland hydrology present? N		f yes, opt	tional wetlar	nd site ID:	_		
Remarks: (Explain alternative procedures here or in a	separate r	eport)					
	ocpulate i	oport.)					
Flat ba	ckwater i	n lake at toe	e of wet slo	оре			
VEGETATION Use scientific names of plan	ts						
	Absolute	Dominant	Indicator	Dominand	ce Test Works	heet	
Tree Stratum (Plot size: 30)	% Cover	Species	Staus	Number of D	ominant Species t	hat	
1					OBL, FACW, or FA		(A)
2				Total Nu	mber of Domina	ant	
3				Species	Across all Stra	ta: 1	(B)
4					ominant Species t		
5		<u></u>		are (OBL, FACW, or FA	AC: 100.00%	(A/B)
Sapling/Shrub stratum (Plot size: 15)	5	= Total Cover		Broyalana	e Index Work	choot	
<u>Sapling/Shrub stratum</u> (Plot size: 15)				Total % C		Sheet	
2				OBL speci		(1 = 10	
3		<u> </u>		FACW spe		(2 = 104	
4		·		FAC speci		(3= 9	
5				FACU spe	cies 2 x	(4 = 8	
	0	= Total Cover		UPL speci		c 5 = 275	
Herb stratum (Plot size: 5)				Column to	tals 122 (A) 406	(B)
1 Phalaris arundinacea	90	Y	FACW	Prevalenc	e Index = B/A =	= 3.33	
2 Schoenoplectus pungens	10	<u>N</u>	OBL				
3 Phragmites australis	10	<u>N</u>	FACW		tic Vegetatior		
4 Apocynum cannabinum	3	<u> </u>	FAC			hytic vegetatio	n
5 <u>Cirsium arvense</u> 6	Ζ	<u> </u>	FACU		ance test is >5 ence index is ≤		
7							
8		·			ogical adaptati rting data in Re	emarks or on a	
9					ate sheet)		
10				Proble	matic hydroph	ytic vegetation*	*
	115	= Total Cover		(expla	in)		
Woody vine stratum (Plot size: 30)						wetland hydrology	
1						bed or problemation	;
2		Tatal Ora		Hydro vegeta	phytic ation		
% Bare Ground in Herb Stratum	0	= Total Cover		presei			
Remarks: (Include photo numbers here or on a separa	ate sheet)			ļ			
/ I							

SOIL

Profile Des	cription: (Descri	be to th	e depth needed	to docur	nent the	indicato	or or confirm the absen	ce of indicators.)
Depth	Matrix		Re	dox Feat	ures			
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks
0-8	10YR 3/1	95	10YR 3/4	5	С	М	loamy clay	
8-24	10YR 3/1	87	10YR 3/4	5	С	М	loamy clay	
			1YR 7/1	8	D	PL		
*Tupo: C = (L Concentration, D =	- Doplati	l on DM - Doduce	d Motrix		l asked Sc	nd Craina **Locati	Dn: PL = Pore Lining, M = Matrix
	bil Indicators:	- Depieti		u Matrix,	1013 - 1016	askeu Sa		blematic Hydric Soils:
-	tisol (A1)		Sar	ndv Gleve	ed Matrix	(S4)	1 cm Muck (AS	-
	tic Epipedon (A2)			ndy Redo		(01)		Redox (A16) (LRR F, G, H)
	ck Histic (A3)			pped Ma	. ,		Dark Surface (
	drogen Sulfide (A4	4)			ky Minera	al (F1)	High Plains De	pressions (F16)
Stra	atified Layers (A5)	(LRR F)) Loa	amy Gley	ed Matrix	(F2)	(LRR H outsic	le of MLRA 72 & 73)
1 cr	m Muck (A9) (LRF	R F, G, H) Dej	pleted Ma	atrix (F3)		Reduced Verti	c (F18)
	pleted Below Dark				Surface	. ,	Red Parent Ma	. ,
	ck Dark Surface (/	-	`		ark Surfac	• •		Dark Surface (TF12)
	ndy Mucky Minera				essions (,	Other (Explain	
	cm Mucky Peat or Pea				Depressi 73 of LR	-		tic vegetation and weltand hydrology must be unless disturbed or problematic
	n Mucky Peat or Peat		F) (IVIL				present,	
	Layer (if observe	ed):						
Type: Depth (inche	oo);				-		Hydric soil pres	ent? <u>N</u>
	es).				-			
Remarks:								
HYDROLO	JGY							
	drology Indicato	rs:						
,	cators (minimum		required: check a	all that ar	nolv)		Secondary	Indicators (minimum of two required)
-	Water (A1)			Salt Cru				e Soil Cracks (B6)
	ater Table (A2)			-	Invertebra	ates (B13		ly Vegetated Concave Surface (B8)
Saturatio					en Sulfide			ge Patterns (B10)
Water M	larks (B1)		Х		son Wate	•		ized Rhizospheres on Living Roots (C3)
	nt Deposits (B2)		X	-				e tilled)
	oosits (B5) on Visible on Aeria	Imagan	(P7)	•	not tiled)			sh Burrows (C8)
	stained Leaves (B9)		· (B7)	-	e of Redu ck Surfac		. ,	tion Visible on Aerial Imagery (C9) orphic Position (D2)
Water-3	tained Leaves (D9))		-	Explain in			leutral Test (D5)
							,	Heave Hummocks (D7) LRR (F)
Surface wat	er present?	Yes	No	Х	Depth (i	nches):		
Water table		Yes	X No		Depth (i		20	
Saturation p		Yes	X No		Depth (i	nches):	18	ndicators of wetland
(includes ca	pillary fringe)							hydrology present? N
Describe rec	corded data (strea	im gauge	e, monitoring well,	, aerial pl	hotos, pre	evious in	spections), if available:	
Remarks:								
	nt above inundatio	n or satu	ration in flood lev	el aerial	photos.			

Appendix B – Representative Site Photos

Photo 1 - Looking southwest. Sample Point NE2-Up in foreground

Photo 2 - Looking west on top of bluff above Photo 1

Photo 3 - Looking northeast along north side of SD 44 in NE quadrant of study area

Photo 4 - Looking west in upland basin near sample point NE1-Up

Photo 5 - Looking northwest along shoreline in SE quadrant of study area

Photo 6 - Looking east along footpath from campground near top of bluff in SE quadrant

Photo 7 - looking northeast on south side of SD 44 in SE quadrant of study area

Photo 8 - Fishing pond in SE quadrant. Wetland SE-1 at left of photo.

Photo 9 - Looking south under west side of bridge from NW quadrant of study area

Photo 10 - looking southeast from NW quadrant of study area along shore of Lake Francis Case

Photo 11 - Looking east at bridge from above shore in NW quadrant of study area

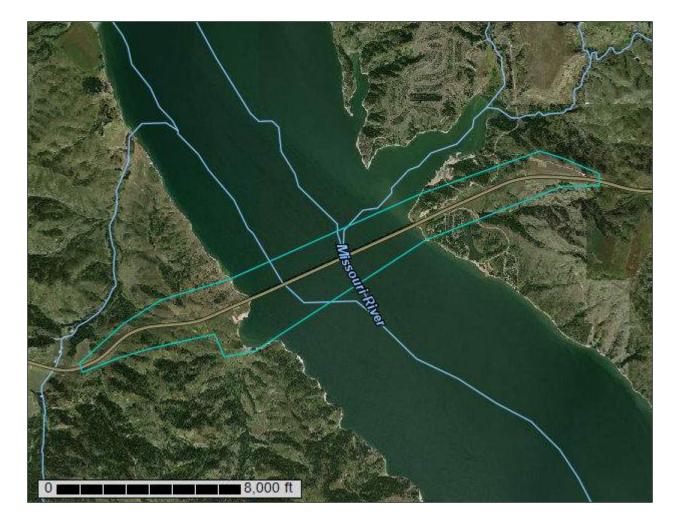
Photo 12 - Looking west at entry sign to West Bridge Recreation Area in SE quadrant of study area. Sign reads "West Bridge Lake Side Use Area"

Photo 13 - Looking northeast at boat ramp parking area and bridge from SE quadrant

Photo 14 - Looking west at Wetland SW-1 at large previously inundated basin

Photo 15- Looking south at Wetland SW-4 (cattails on left side of photo) upgradient from lake

Photo 16 - Lake edge at interface with Wetland SW-3


Appendix C – NRCS Web Soil Survey

United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Charles Mix County, South Dakota, and Gregory County, South Dakota

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	
Legend	10
Map Unit Legend	12
Map Unit Descriptions	12
Charles Mix County, South Dakota	15
BdF—Betts-Ethan loams, 15 to 40 percent slopes	15
LoB—Lowry silt loam, 2 to 6 percent slopes	17
LoC—Lowry silt loam, 6 to 9 percent slopes	19
SnF—Sansarc clay, 6 to 35 percent slopes	20
SoF—Sansarc-Boyd complex, 15 to 40 percent slopes	22
SuE—Sully silt loam, 9 to 25 percent slopes	24
W—Water	
Gregory County, South Dakota	27
LaD—Labu clay, 9 to 15 percent slopes	27
LcF—Labu-Sansarc silty clays, 9 to 35 percent slopes	28
ObE—Okaton-Lakoma silty clays, 15 to 40 percent slopes	30
PrB—Promise clay, 3 to 6 percent slopes	33
W—Water	35
References	36

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

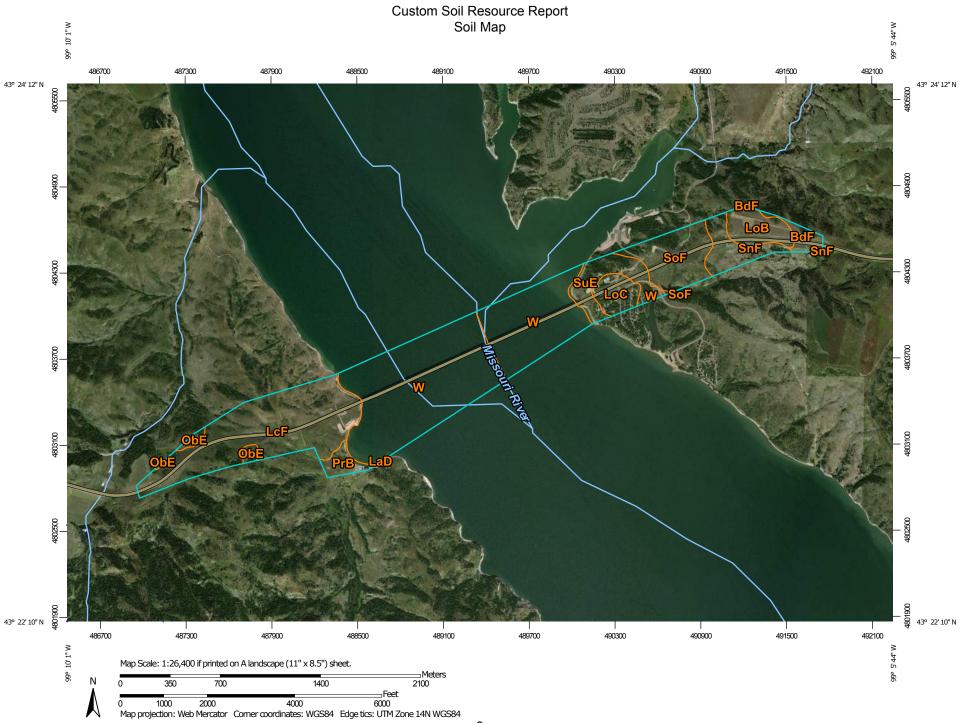
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND		MAP INFORMATION			
Area of In	iterest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.			
Soils	Soil Map Unit Polygons	0	Very Stony Spot	Please rely on the bar scale on each map sheet for map measurements.			
~	Soil Map Unit Lines	\$	Wet Spot Other	Source of Map: Natural Resources Conservation Service			
	Soil Map Unit Points		Special Line Features	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)			
•	Point Features Blowout	Water Featu	ures				
© ⊠	Borrow Pit	~	Streams and Canals	Maps from the Web Soil Survey are based on the Web Mercato projection, which preserves direction and shape but distorts			
×	Clay Spot	Transportat	tion Rails	distance and area. A projection that preserves area, such as th Albers equal-area conic projection, should be used if more			
\diamond	Closed Depression	~	Interstate Highways	accurate calculations of distance or area are required.			
*	Gravel Pit Gravelly Spot	~	US Routes	This product is generated from the USDA-NRCS certified data of the version date(s) listed below.			
0	Landfill	~	Major Roads Local Roads	Soil Survey Area: Charles Mix County, South Dakota			
A.	Lava Flow	Backgroun		Survey Area Data: Version 24, Oct 6, 2017			
<u>مل</u> ه	Marsh or swamp	Mar.	Aerial Photography	Soil Survey Area: Gregory County, South Dakota			
☆ ©	Mine or Quarry Miscellaneous Water			Survey Area Data: Version 19, Oct 6, 2017			
õ	Perennial Water			Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different			
\sim	Rock Outcrop			scales, with a different land use in mind, at different times, or a different levels of detail. This may result in map unit symbols, s			
+	Saline Spot			properties, and interpretations that do not completely agree across soil survey area boundaries.			
** =	Sandy Spot Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales			
0	Sinkhole			1:50,000 or larger.			
»	Slide or Slip			Date(s) aerial images were photographed: Oct 20, 2010—Fe			
ø	Sodic Spot			2017			
				The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background			

MATION

which the soil lines were compiled and digitized probably differs from the background

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BdF	Betts-Ethan loams, 15 to 40 percent slopes	9.6	1.7%
LoB	Lowry silt loam, 2 to 6 percent slopes	24.0	4.4%
LoC	Lowry silt loam, 6 to 9 percent slopes	17.9	3.3%
SnF	Sansarc clay, 6 to 35 percent slopes	24.9	4.5%
SoF	Sansarc-Boyd complex, 15 to 40 percent slopes	46.6	8.5%
SuE	Sully silt loam, 9 to 25 percent slopes	31.5	5.7%
W	Water	82.3	14.9%
Subtotals for Soil Survey A	rea	236.8	43.0%
Totals for Area of Interest		551.4	100.0%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
LaD	Labu clay, 9 to 15 percent slopes	0.2	0.0%
LcF	Labu-Sansarc silty clays, 9 to 35 percent slopes	132.9	24.1%
ObE	Okaton-Lakoma silty clays, 15 to 40 percent slopes	6.2	1.1%
PrB	Promise clay, 3 to 6 percent slopes	10.5	1.9%
W	Water	164.7	29.9%
Subtotals for Soil Survey Area		314.6	57.0%
Totals for Area of Interest		551.4	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some

observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Charles Mix County, South Dakota

BdF—Betts-Ethan loams, 15 to 40 percent slopes

Map Unit Setting

National map unit symbol: 2wkq9 Elevation: 1,120 to 2,230 feet Mean annual precipitation: 16 to 28 inches Mean annual air temperature: 43 to 52 degrees F Frost-free period: 120 to 160 days Farmland classification: Not prime farmland

Map Unit Composition

Betts and similar soils: 55 percent Ethan and similar soils: 35 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Betts

Setting

Landform: Ground moraines Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Convex Parent material: Fine-loamy till

Typical profile

A - 0 to 3 inches: loam Bk - 3 to 31 inches: clay loam C - 31 to 79 inches: clay loam

Properties and qualities

Slope: 15 to 40 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 30 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: High (about 9.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: C Ecological site: Thin Upland (R055CY012SD) Forage suitability group: Not suited (G055CY000SD) Hydric soil rating: No

Description of Ethan

Setting

Landform: Ground moraines Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Convex Parent material: Fine-loamy till

Typical profile

Ap - 0 to 7 inches: loam Bk - 7 to 33 inches: clay loam C - 33 to 79 inches: clay loam

Properties and qualities

Slope: 15 to 40 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 30 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: C Ecological site: Thin Upland (R055CY012SD) Forage suitability group: Limy Upland (G055CY400SD) Hydric soil rating: No

Minor Components

Clarno

Percent of map unit: 4 percent Landform: Ground moraines Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Ecological site: Loamy (R055CY010SD) Hydric soil rating: No

Davis

Percent of map unit: 2 percent Landform: Ground moraines Landform position (three-dimensional): Base slope, talf Down-slope shape: Concave Across-slope shape: Linear Ecological site: Loamy (R055CY010SD) Hydric soil rating: No

Talmo

Percent of map unit: 2 percent Landform: Ground moraines Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Convex Ecological site: Very Shallow (R055CY016SD) Hydric soil rating: No

Betts, very stony

Percent of map unit: 1 percent Landform: Ground moraines Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Convex Ecological site: Thin Upland (R055CY012SD) Hydric soil rating: No

Ethan, very stony

Percent of map unit: 1 percent Landform: Ground moraines Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Convex Ecological site: Thin Upland (R055CY012SD) Hydric soil rating: No

LoB—Lowry silt loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: cxg5 Elevation: 1,310 to 1,970 feet Mean annual precipitation: 18 to 25 inches Mean annual air temperature: 43 to 50 degrees F Frost-free period: 130 to 155 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Lowry and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Lowry

Setting

Landform: Plains Landform position (two-dimensional): Backslope Down-slope shape: Linear Across-slope shape: Linear Parent material: Loess

Typical profile

H1 - 0 to 7 inches: silt loam

- H2 7 to 15 inches: silt loam
- H3 15 to 60 inches: silt loam

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: High (about 11.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Ecological site: Loamy (R055CY010SD) Forage suitability group: Loam (G055CY100SD) Hydric soil rating: No

Minor Components

Agar

Percent of map unit: 7 percent Landform: Swales Landform position (two-dimensional): Footslope Down-slope shape: Linear Across-slope shape: Concave Ecological site: Loamy (R055CY010SD) Hydric soil rating: No

Mobridge

Percent of map unit: 7 percent Landform: Swales Landform position (two-dimensional): Footslope Down-slope shape: Linear Across-slope shape: Concave Ecological site: Loamy Overflow (R055CY020SD) Hydric soil rating: No

Tetonka

Percent of map unit: 1 percent Landform: Potholes Landform position (two-dimensional): Toeslope Down-slope shape: Concave Across-slope shape: Concave Ecological site: Wet Meadow (R055CY004SD) Hydric soil rating: Yes

LoC—Lowry silt loam, 6 to 9 percent slopes

Map Unit Setting

National map unit symbol: cxg6 Elevation: 1,310 to 1,970 feet Mean annual precipitation: 18 to 25 inches Mean annual air temperature: 43 to 50 degrees F Frost-free period: 130 to 155 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Lowry and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Lowry

Setting

Landform: Plains Landform position (two-dimensional): Backslope Down-slope shape: Linear Across-slope shape: Linear Parent material: Loess

Typical profile

H1 - 0 to 8 inches: silt loam *H2 - 8 to 15 inches:* silt loam *H3 - 15 to 60 inches:* silt loam

Properties and qualities

Slope: 6 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: High (about 11.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Loamy (R055CY010SD) Forage suitability group: Loam (G055CY100SD) Hydric soil rating: No

Minor Components

Agar

Percent of map unit: 8 percent Landform: Swales Landform position (two-dimensional): Footslope Down-slope shape: Linear Across-slope shape: Concave Ecological site: Loamy (R055CY010SD) Hydric soil rating: No

Mobridge

Percent of map unit: 7 percent Landform: Swales Landform position (two-dimensional): Footslope Down-slope shape: Linear Across-slope shape: Concave Ecological site: Loamy Overflow (R055CY020SD) Hydric soil rating: No

SnF—Sansarc clay, 6 to 35 percent slopes

Map Unit Setting

National map unit symbol: 2v675 Elevation: 1,260 to 2,490 feet Mean annual precipitation: 16 to 21 inches Mean annual air temperature: 43 to 50 degrees F Frost-free period: 100 to 150 days Farmland classification: Not prime farmland

Map Unit Composition

Sansarc and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sansarc

Setting

Landform: Hills Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Residuum weathered from shale

Typical profile

A - 0 to 4 inches: clay AC - 4 to 10 inches: parachannery clay C - 10 to 14 inches: very parachannery clay Cr - 14 to 34 inches: bedrock

Properties and qualities

Slope: 6 to 35 percent
Depth to restrictive feature: 11 to 20 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 6 percent
Gypsum, maximum in profile: 2 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Very low (about 1.3 inches)

Interpretive groups

Land capability classification (irrigated): 7e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: Shallow Clay (R063AY017SD) Forage suitability group: Not suited (G063AY000SD) Hydric soil rating: No

Minor Components

Opal

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Convex Ecological site: Clayey (R063AY011SD) Hydric soil rating: No

Promise

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Footslope Landform position (three-dimensional): Interfluve Down-slope shape: Concave Across-slope shape: Linear Ecological site: Clayey (R063AY011SD) Hydric soil rating: No

Bullcreek

Percent of map unit: 3 percent Landform: Drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Concave Ecological site: Dense Clay (R063AY018SD) Hydric soil rating: No

Badland

Percent of map unit: 2 percent Landform: Hills Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

SoF—Sansarc-Boyd complex, 15 to 40 percent slopes

Map Unit Setting

National map unit symbol: cxgv Elevation: 1,310 to 1,640 feet Mean annual precipitation: 17 to 25 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 135 to 160 days Farmland classification: Not prime farmland

Map Unit Composition

Sansarc and similar soils: 50 percent Boyd and similar soils: 30 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sansarc

Setting

Landform: Hills Landform position (two-dimensional): Shoulder Down-slope shape: Convex Across-slope shape: Convex Parent material: Clayey residuum weathered from shale

Typical profile

H1 - 0 to 4 inches: clay H2 - 4 to 13 inches: clay Cr - 13 to 60 inches: weathered bedrock

Properties and qualities

Slope: 25 to 40 percent
Depth to restrictive feature: 4 to 20 inches to paralithic bedrock
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Gypsum, maximum in profile: 5 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Very low (about 1.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: Shallow Clay (R063BY017SD) Forage suitability group: Not suited (G063BY000SD) Hydric soil rating: No

Description of Boyd

Setting

Landform: Hills Landform position (two-dimensional): Backslope Down-slope shape: Linear Across-slope shape: Linear Parent material: Clayey residuum weathered from shale

Typical profile

H1 - 0 to 5 inches: silty clay

- H2 5 to 23 inches: clay
- H3 23 to 31 inches: clay
- *Cr* 31 to 60 inches: weathered bedrock

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Gypsum, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Ecological site: Clayey (R063BY011SD) Forage suitability group: Not suited (G063BY000SD) Hydric soil rating: No

Minor Components

Betts

Percent of map unit: 7 percent Landform: Moraines Landform position (two-dimensional): Shoulder *Down-slope shape:* Convex *Across-slope shape:* Convex *Ecological site:* Thin Upland (R063BY012SD) *Hydric soil rating:* No

Gavins

Percent of map unit: 7 percent Landform: Hills Landform position (two-dimensional): Backslope Down-slope shape: Linear Across-slope shape: Linear Ecological site: Thin Upland (R063BY012SD) Hydric soil rating: No

Sully

Percent of map unit: 6 percent Landform: Plains Landform position (two-dimensional): Shoulder Down-slope shape: Convex Across-slope shape: Convex Ecological site: Thin Upland (R063BY012SD) Hydric soil rating: No

SuE—Sully silt loam, 9 to 25 percent slopes

Map Unit Setting

National map unit symbol: cxgx Elevation: 1,310 to 1,970 feet Mean annual precipitation: 18 to 25 inches Mean annual air temperature: 43 to 50 degrees F Frost-free period: 130 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Sully and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sully

Setting

Landform: Plains Landform position (two-dimensional): Shoulder Down-slope shape: Convex Across-slope shape: Convex Parent material: Loess

Typical profile

H1 - 0 to 4 inches: silt loam H2 - 4 to 60 inches: silt loam

Properties and qualities

Slope: 9 to 25 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 20 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: High (about 10.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: Thin Upland (R055CY012SD) Forage suitability group: Limy Upland (G055CY400SD) Hydric soil rating: No

Minor Components

Betts

Percent of map unit: 7 percent Landform: Moraines Landform position (two-dimensional): Shoulder Down-slope shape: Convex Across-slope shape: Convex Ecological site: Thin Upland (R055CY012SD) Hydric soil rating: No

Sansarc

Percent of map unit: 7 percent Landform: Hills Landform position (two-dimensional): Shoulder Down-slope shape: Convex Across-slope shape: Convex Ecological site: Shallow Clay (R055CY017SD) Hydric soil rating: No

Talmo

Percent of map unit: 6 percent Landform: Outwash terraces on moraines Landform position (two-dimensional): Shoulder Down-slope shape: Convex Across-slope shape: Convex Ecological site: Very Shallow (R055CY016SD) Hydric soil rating: No

W-Water

Map Unit Setting

National map unit symbol: cxh5 Elevation: 1,310 to 1,970 feet Mean annual precipitation: 18 to 25 inches Mean annual air temperature: 43 to 50 degrees F Frost-free period: 130 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Water

Interpretive groups

Land capability classification (irrigated): None specified Ecological site: Non-site (R055CY999SD) Hydric soil rating: Unranked

Gregory County, South Dakota

LaD—Labu clay, 9 to 15 percent slopes

Map Unit Setting

National map unit symbol: cxns Elevation: 1,310 to 1,640 feet Mean annual precipitation: 17 to 25 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 135 to 160 days Farmland classification: Not prime farmland

Map Unit Composition

Labu and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Labu

Setting

Landform: Breaks Landform position (two-dimensional): Backslope Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from shale

Typical profile

H1 - 0 to 6 inches: clay H2 - 6 to 30 inches: clay Cr - 30 to 60 inches: weathered bedrock

Properties and qualities

Slope: 9 to 15 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Available water storage in profile: Low (about 3.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Ecological site: Clayey (R063BY011SD) Forage suitability group: Clayey Subsoil (G063BY210SD) Hydric soil rating: No

Minor Components

Sansarc

Percent of map unit: 15 percent *Landform:* Breaks

Custom Soil Resource Report

Landform position (two-dimensional): Summit, shoulder Down-slope shape: Linear Across-slope shape: Convex Ecological site: Shallow Clay (R063BY017SD) Hydric soil rating: No

LcF—Labu-Sansarc silty clays, 9 to 35 percent slopes

Map Unit Setting

National map unit symbol: 2wfq7 Elevation: 1,200 to 2,310 feet Mean annual precipitation: 19 to 28 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 100 to 150 days Farmland classification: Not prime farmland

Map Unit Composition

Labu and similar soils: 55 percent Sansarc and similar soils: 25 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Labu

Setting

Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Linear Parent material: Residuum weathered from shale

Typical profile

A - 0 to 5 inches: silty clay Bw - 5 to 25 inches: silty clay C - 25 to 33 inches: silty clay Cr - 33 to 43 inches: bedrock

Properties and qualities

Slope: 9 to 35 percent
Depth to restrictive feature: 30 to 38 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Ecological site: Clayey (R063BY011SD) Forage suitability group: Clayey Subsoil (G063BY210SD) Hydric soil rating: No

Description of Sansarc

Setting

Landform: Hills Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Residuum weathered from shale

Typical profile

A - 0 to 4 inches: silty clay AC - 4 to 10 inches: parachannery clay C - 10 to 14 inches: very parachannery clay Cr - 14 to 34 inches: bedrock

Properties and qualities

Slope: 9 to 35 percent
Depth to restrictive feature: 11 to 20 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 6 percent
Gypsum, maximum in profile: 2 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Very low (about 1.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: Shallow Clay (R063BY017SD) Forage suitability group: Not suited (G063BY000SD) Hydric soil rating: No

Minor Components

Paka

Percent of map unit: 7 percent

Landform: Hills Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Ecological site: Loamy (R063BY010SD) Hydric soil rating: No

Verdel

Percent of map unit: 7 percent Landform: Hills Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Interfluve Down-slope shape: Concave Across-slope shape: Linear Ecological site: Clayey (R063BY011SD) Hydric soil rating: No

Wewela

Percent of map unit: 3 percent Landform: Hills Landform position (two-dimensional): Footslope Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Linear Ecological site: Loamy (R063BY010SD) Hydric soil rating: No

Badland

Percent of map unit: 3 percent Landform: Hills Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

ObE—Okaton-Lakoma silty clays, 15 to 40 percent slopes

Map Unit Setting

National map unit symbol: 2tj7s Elevation: 1,230 to 2,620 feet Mean annual precipitation: 16 to 21 inches Mean annual air temperature: 43 to 50 degrees F Frost-free period: 100 to 150 days Farmland classification: Not prime farmland

Map Unit Composition

Okaton and similar soils: 45 percent

Lakoma and similar soils: 40 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Okaton

Setting

Landform: Hills Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Linear Parent material: Residuum weathered from shale

Typical profile

A - 0 to 8 inches: silty clay C - 8 to 14 inches: silty clay Cr - 14 to 24 inches: bedrock

Properties and qualities

Slope: 15 to 40 percent
Depth to restrictive feature: 10 to 18 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 25 percent
Gypsum, maximum in profile: 2 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Very low (about 1.8 inches)

Interpretive groups

Land capability classification (irrigated): 7e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: Shallow Clay (R063AY017SD) Forage suitability group: Not suited (G063AY000SD) Hydric soil rating: No

Description of Lakoma

Setting

Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Residuum weathered from shale

Typical profile

Ap - 0 to 5 inches: silty clay *Bw - 5 to 11 inches:* silty clay

Bk - 11 to 22 inches: silty clay *BCk* - 22 to 30 inches: silty clay *Cr* - 30 to 40 inches: bedrock

Properties and qualities

Slope: 15 to 40 percent
Depth to restrictive feature: 25 to 33 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 30 percent
Gypsum, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Low (about 3.9 inches)

Interpretive groups

Land capability classification (irrigated): 7e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: Thin Upland (R063AY012SD) Forage suitability group: Clayey Subsoil (G063BY210SD) Hydric soil rating: No

Minor Components

Promise

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Footslope, backslope Landform position (three-dimensional): Side slope, base slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: Clayey (R063AY011SD) Hydric soil rating: No

Boro

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit, backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Linear Ecological site: Clayey (R063AY011SD) Hydric soil rating: No

Bullcreek

Percent of map unit: 3 percent Landform: Drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: Dense Clay (R063AY018SD) Hydric soil rating: No

Schamber

Percent of map unit: 2 percent Landform: Hills Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Linear Ecological site: Very Shallow (R063AY016SD) Hydric soil rating: No

PrB—Promise clay, 3 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2rmj7 Elevation: 1,250 to 2,760 feet Mean annual precipitation: 16 to 21 inches Mean annual air temperature: 43 to 50 degrees F Frost-free period: 100 to 150 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Promise and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Promise

Setting

Landform: Plains Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Clayey alluvium

Typical profile

Ap - 0 to 8 inches: clay Bss - 8 to 16 inches: clay Bkss - 16 to 36 inches: clay Cy - 36 to 47 inches: clay C - 47 to 79 inches: clay

Properties and qualities

Slope: 3 to 6 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 8 percent Gypsum, maximum in profile: 10 percent Salinity, maximum in profile: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 9.0 Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: D Ecological site: Clayey (R063AY011SD) Forage suitability group: Clayey Subsoil (G063AY210SD) Hydric soil rating: No

Minor Components

Opal

Percent of map unit: 5 percent Landform: Plains Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex, linear Ecological site: Clayey (R063AY011SD) Hydric soil rating: No

Bullcreek

Percent of map unit: 4 percent Landform: Plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: Dense Clay (R063AY018SD) Hydric soil rating: No

Capa

Percent of map unit: 3 percent Landform: Swales Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: Thin Claypan (R063AY015SD) Hydric soil rating: No

Kolls

Percent of map unit: 3 percent Landform: Closed depressions Landform position (two-dimensional): Toeslope

Custom Soil Resource Report

Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Ecological site: Closed Depression (R063AY019SD) Hydric soil rating: Yes

W-Water

Map Unit Setting

National map unit symbol: cxqg Elevation: 1,310 to 1,640 feet Mean annual precipitation: 17 to 25 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 135 to 160 days Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Water

Interpretive groups

Land capability classification (irrigated): None specified Ecological site: Non-site (R063BY999SD) Hydric soil rating: Unranked

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Appendix D – WETS Climate and Precipitation Data

WETS Station: ACADEMY 2NE, SD

Requested years: 1971 - 2000

Month	Avg Max Temp	Avg Min Temp	Avg Mean Temp	Avg Precip	30% chance precip less than	30% chance precip more than	Avg number days precip 0. 10 or more	Avg Snowfall	
Jan	30.3	7.7	19.0	0.49	0.20	0.60	2	6.6	
Feb	36.8	13.9	25.4	0.63	0.25	0.71	2	6.7	
Mar	47.4	23.1	35.3	1.52	0.72	1.85	4	8.8	
Apr	60.4	34.1	47.3	2.68	1.83	3.20	6	4.5	
May	71.8	45.7	58.8	3.78	2.37	4.56	7	0.0	
Jun	81.7	55.4	68.5	3.34	2.29	3.97	6	0.0	
Jul	88.0	60.5	74.3	2.96	1.96	3.55	6	0.0	
Aug	86.9	58.4	72.6	2.17	1.30	2.63	4	0.0	
Sep	77.8	48.2	63.0	2.24	1.06	2.74	4	0.3	
Oct	63.9	36.2	50.0	1.82	0.80	2.22	4	1.7	
Nov	44.5	22.7	33.6	0.99	0.45	1.21	3	8.2	
Dec	33.7	11.8	22.8	0.39	0.21	0.48	2	6.7	
Annual:					19.50	25.76			
Average	60.3	34.8	47.5	-	-	-	-	-	
Total	-	-	-	23.01			47	43.5	

GROWING SEASON DATES

Years with missing data:	24 deg =	28 deg =	32 deg =
	0	0	0
Years with no occurrence:	24 deg =	28 deg =	32 deg =
	0	0	0
Data years used:	24 deg =	28 deg =	32 deg =
	30	30	30
Probability	24 F or	28 F or	32 F or
	higher	higher	higher
50 percent *	4/12 to	4/24 to	5/3 to 9/
	10/18:	10/9: 168	28: 148
	189 days	days	days
70 percent *	4/8 to 10/	4/20 to	4/29 to
	23: 198	10/14:	10/3: 157
	days	177 days	days
* Percent chance of the			

* Percent chance of the growing season occurring between the Beginning and Ending dates.

STATS TABLE - total precipitation (inches)													
Yr	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annl
1898							3.84	3.00	0. 31	1. 06	0.25	0.13	8.59
1899	0.48	0.15	2.06	1.12	3.25	2.71	2.40	2.42	0. 14	0. 71	0.57	0.16	16. 17
1900	0.01	0.07	1.32	2.73	1.68	0.95	8.40	4.36	0. 46	2. 01	0.16	0.18	22. 33
1901	0.08	0.24	0.72	2.08	1.83	7.25	1.92	4.67	5. 25	2. 70	0.09	1.00	27. 83
1902	0.41	0.48	M1.79	2.37	2.50	2.50	M1.89	5.34	M0. 70	0. 60	0.78	2.53	21. 89
1903	0.08	0.75	1.23	1.59	2.71	2.72	5.08	2.88	1. 61	0. 33	0.59	0.85	20. 42
1904	M0.28	0.42	0.36	2.66	0.90	4.31	2.27	M2.48	M0. 25	2. 25	M0. 08	0.35	16. 61
1905	0.57	0.35	1.48	1.19	5.24	7.38	2.81	0.92	1. 90	2. 31	0.63	0.02	24. 80
1906	M0.99	0.70	3.00	6.04	4.75	5.06	1.37	4.41	2.	3.	0.43	0.86	33.

									92	06			59
1907	1.10	0.60	M0.35	1.33	2.91	2.66	5.77	2.04	2. 15	M1. 26	0.06	0.71	20 94
1908	0.21	1.06	0.69	2.63	M6.06	6.60	2.84	1.62	1. 17	1. 37	0.76	1.02	26 03
1909	0.43	0.94	0.24	0.88	5.32	1.57	2.20	4.60	M0. 66	1. 12	1.62	1.80	21 38
1910	1.10	0.18	M0.46	1.39	M1.76	M4.19	2.88	1.34	2. 00	0. 36	0.15	0.86	16 67
1911	0.15	0.80	0.23	3.41	2.35	2.49	3.61	2.67	2. 81	4. 11	0.34	0.60	23 57
1912	0.11	0.07	0.86	4.17	3.72	0.32	6.26	3.35	1. 03	0. 50	Т	0.28	20 67
1913	0.11	0.43	1.91	2.64	2.57	3.75	3.92	1.83	1. 53	0. 47	0.42	0.23	19 81
1914	0.23	1.14	1.19	M3.64	2.34	5.79	M1.54	2.81	3. 10	3. 25	0.02	0.81	25 86
1915	0.47	2.79	M2.18	3.25	M4.22	5.57	5.89	0.66	1. 85	1. 33	0.16	0.62	28 99
1916	0.64	0.15	0.60	2.03	4.01	3.78	2.09	2.97	1. 21	0. 68	0.30	0.67	19 13
1917	1.00	0.43	2.26	3.19	5.60	2.55	2.87	0.87	1. 95	0. 21	0.26	0.93	22
1918	1.29	0.70	1.20	2.68	3.87	3.55	2.87	2.59	0. 22	0. 56	0.84	2.11	22
1919	0.15	1.45	0.66	3.54	2.35	5.35	1.68	1.08	1. 22	2. 49	3.07	0.35	23
1920	0.20	1.00	1.23	4.58	3.20	5.53	1.49	1.96	0. 55	2. 27	1.79	0.15	23
1921	0.05	Т	1.48	1.00	3.18	1.56	2.22	6.19	3. 22	0. 86	0.29	0.20	2(2
1922	0.45	1.05	0.20	1.13	1.77	4.35	3.95	2.72	0. 00	1. 43	1.80	0.80	19
1923	0.35	0.00	0.40	1.64	2.73	5.76	1.95	4.67	1.	0.	0.28	0.40	20
1924	0.10	1.07	0.63	0.63	0.91	6.86	0.35	4.02	94 3. 60	68 0. 82	0.40	1.50	20
1925	0.00	Т	0.42	1.17	0.52	4.75	3.68	3.00	1.	0.	0.44	0.30	8
1926	M0.68	0.29	0.00	0.00	2.43	1.88	1.60	1.97	30 5.	80 1. 70	0.13	0.10	3
1927	0.05	0.20	2.65	6.68	4.99	0.99	1.68	1.76	41 0.	70 0.	0.31	1.07	19 21
1928	0.00	0.65	1.15	0.21	1.84	3.50	0.88	2.50	34 0.	47	1.36	0.00	14
1929	M0.00	0.90	1.27	2.22	3.00	3.38	3.47	0.28	51 2.	92 3.	1.00	Т	5 2
1930	0.30	0.40	0.35	2.69	2.02	4.85	1.03	4.00	39 1.	95 2.	1.70	0.00	8 20
1931	0.20	0.23	1.62	0.69	2.17	4.92	1.31	0.83	12 1.	29 1.	0.72	0.53	75 16
1932	0.53	0.60	M1.00		3.10	6.20	M1.02	2.95	46 1.	51 1.	0.00	0.21	19
1933	т	0.22	0.88	1.75	2.87	M1.34	4.59	4.06	56 0.	04 0.	т	0.51	2 16
1934	0.20	0.10	1.20	0.25	0.62	3.46	1.63	1.69	72 1.	00 1.	0.32	Т	9. 1
1935	0.20	1.40	0.98	5.79	3.87	2.63	0.85	0.83	50 0.	00 M0.	0.83	1.05	9 19
1936	0.52	0.73	0.78	1.47	2.03	2.27	0.80	0.55	81 1.	08 1.		0.61	3: 12
1937	0.90	0.10	1.82	1.23	2.90	3.99	1.10	2.25	50 0.	05		0.42	9
1938	0.40	1.15	2.85	6.96	4.99	2.05	2.12	1.09	85 1.	00 T		0.10	6
1939	1.30	0.35	0.35	1.82	3.77	3.20	5.23	0.86	1. 58 1.	1.	T.	0.00	4
									15	18			2
1940	0.08	0.72	2.10	1.52	0.14	3.27	0.58	3.47	0.	0.	1.23	0.67	15

									77	65			20
1941	0.52	0.38	0.48	4.69	1.77	3.95	1.74	2.91	2. 31	4. 32	0.10	0.58	23. 75
1942	Т	1.11	2.34	3.74	9.06	6.07	1.57	2.21	2. 21	0. 31	MT	0.58	29. 20
1943	0.48	0.35	0.71	1.63	2.36	M3.35	1.29	1.84	0. 52	1. 56	0.10	Т	14. 19
1944	2.00	0.68	0.70	3.86	4.44	8.06	2.58	6.85	0. 83	1. 35	2.39	MT	33. 74
1945	0.48	0.51	0.50	1.97	2.85	3.98	1.15	3.35	1. 50	0. 46	0.17	0.15	17 07
1946	0.25	0.39	3.53	1.02	3.74	3.47	2.02	2.63	5. 22	5. 51	M1. 00	0.37	29 15
1947	0.46	0.13	0.40	2.96	1.70	7.42	1.78	0.56	1. 25	1. 38	1.90	0.08	20 02
1948	0.27	0.35	M0.52	2.55	1.87	5.82	2.61	1.05	1. 08	1. 17	0.71	0.45	18 45
1949	1.66	Т	2.21	1.73	2.70	1.26	3.55	3.11	2. 82	2. 75	0.42	1.50	23 71
1950	0.32	1.00	2.53	1.10	2.80	1.68	8.42	3.91	2. 35	1. 22	MT	MT	25 33
1951	0.20	1.08	0.81	3.03	5.24	4.41	3.23	3.09	2. 93	1. 83	0.74	1.91	28 50
1952	1.22	1.09	1.15	0.85	2.25	M2.39	1.46	3.64	Т	0. 00	0.82	0.08	14 98
1953	M0.00	M1.41	M0.09	4.01	2.11	6.54	1.27	4.75	0. 10	0. 17	0.52	1.05	22 02
1954	Т	0.51	0.84	1.46	M1.93	7.27	2.27	4.39	1. 80	1. 05	0.55	Т	22 07
1955	Т	1.30	0.11	1.78	1.71	3.21	1.34	1.19	1. 13	0. 31	0.03	M0. 15	12 20
1956	0.05	0.02	1.71	1.89	0.94	1.24	3.35	M2.44	0. 74	1. 56	1.74	0.40	16 08
1957	0.50	0.50	1.42	2.42	5.92	4.17	3.16	1.17	2. 24	2. 38	2.93	Т	26 81
1958	0.23	1.06	0.70	3.68	1.98	2.75	3.38	0.75	0. 46	Т	0.85	0.12	15 96
1959	0.42	0.81	1.26	1.13	5.66	2.75	1.57	2.03	2. 75	2. 00	1.47	0.69	22 54
1960	0.90	0.88	1.19	3.27	5.04	2.53	0.56	3.97	1. 79	0. 43	1.11	0.20	21 87
1961	0.41	0.48	0.78	0.80	3.47	2.73	3.20	1.95	1. 87	1. 14	0.40	0.27	17 50
1962	0.36	2.64	3.99	1.34	8.06	6.27	M4.27		1. 40	0. 47	0.10	0.01	28 9
1963	1.40	0.16	0.72	2.44		M1.79	6.88	0.52	4. 16	0. 32	0.75	0.20	19 34
1964	0.22	0.08	2.13	3.29	2.49	5.44	4.21	0.92	1. 54	0. 00	Т	1.12	21 44
1965	0.18	0.32	0.80	1.58	2.65	7.52	3.02	0.69	4. 15	0. 52	0.40	0.67	22 50
1966	0.27	0.34	1.48	2.35	0.99	2.30	2.39	5.79	1. 71	1. 08	0.19	0.33	19 23
1967	0.76	0.30	0.17	1.08	1.52	7.70	0.22	2.26	1. 34	0. 77	Т	0.35	16 41
1968	0.28	0.10	0.62	6.51	2.92	4.33	0.55	0.91	1. 79	2. 31	0.81	1.68	22 8
1969	0.57	1.07	0.08	0.79	4.33	1.39	3.16	2.60	3. 26	1. 93	0.13	0.39	19 70
1970	0.36	0.15	1.72	4.23	2.57	3.60	0.50	0.89	1. 43	2. 19	1.48	0.81	19 93
1971	0.05	1.09	0.65	4.41	3.06	2.84	2.09	1.35	1. 31	3. 91	1.22	0.49	22 4
1972	0.12	0.14	0.24	3.35	7.91	5.07	3.27	1.45	0. 39	1. 66	1.78	0.38	25 70
1973	0.88	0.70	3.97	1.15	4.16	1.48	2.23	0.83	4. 83	1. 71	1.73	0.38	24 0
1974	0.07	0.47	1.20	3.34	3.62	4.28	M1.14	0.88	0.	0.	0.22	0.10	16

1975 0.86 0.18 2.19 1.38 0.79 5.39 1.01 0.53 1. 1. 0.80 0.10 15 1976 0.67 0.24 0.29 1.46 2.33 0.91 1.64 0.96 2. 0.2 0.15 15 1976 0.67 0.24 0.29 1.46 2.33 0.91 1.64 0.96 2. 0.2 0.15 15 1977 0.23 2.91 4.20 3.59 4.59 1.91 4.52 4.06 4. 3. 1.23 M0. 33 1978 0.30 1.60 0.22 4.28 5.04 2.13 3.12 0.64 0. 67 53 99 1979 1.12 0.01 1.73 2.31 2.74 2.12 5.54 2.31 0. 2. 1.51 T 22														
1976 0.67 0.24 0.23 0.46 0.23 0.91 1.46 0.23 0.91 0.46 0.81 0.95 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>59</th><th>47</th><th></th><th></th><th>38</th></th<>										59	47			38
1977 0.23 0.21 4.20 4.50 4.50 4.50 4.60 4.5 8.1 1.23 M.0 1 1978 0.30 1.60 0.22 4.28 5.64 2.13 3.12 0.60 0.6 0.6 0.6 0.6 0.7 7 1979 0.21 0.21 0.58 0.59 2.46 2.95 0.82 3.99 1.6 0.6 1.43 0.05 2.25 1.13 2.92 3.45 6.19 1.66 0.6 1.43 0.05 2.0 1.43 0.05 1.7 2.73 1.83 3.04 6.00 3.01 0.49 0.5 1.30 0.172 5.88 3.30 4.50 2.26 3.92 6.9 2.8 0.8 1.8 0.8 0.9 0.1 1.8 0.8 0.9 0.1 1.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8<	1975	0.86	0.18	2.19	1.38	0.79	5.39	1.01	0.53			0.80	0.10	15 52
1978 0.30 1.60 0.22 4.28 0.64 2.12 3.12 0.64 0.6 0.7 </td <td>1976</td> <td>0.67</td> <td>0.24</td> <td>0.29</td> <td>1.46</td> <td>2.33</td> <td>0.91</td> <td>1.64</td> <td>0.96</td> <td></td> <td></td> <td>0.02</td> <td>0.15</td> <td>11 50</td>	1976	0.67	0.24	0.29	1.46	2.33	0.91	1.64	0.96			0.02	0.15	11 50
1 1 0 1 2 3 2 1 0	1977	0.23	2.91	4.20	3.59	4.59	1.91	4.52	4.06			1.23		35 08
1980 0.21 0.21 0.88 0.95 2.46 2.96 0.82 3.99 12 3.0 0.05 0.	1978	0.30	1.60	0.22	4.28	5.04	2.13	3.12	0.64			0.14	0.26	18 93
10981 0.20 0.05 2.25 1.13 2.02 3.46 6.19 1.66 0.2 1.5 1.40 0.72 2 1982 1.16 T 1.35 1.30 9.55 3.86 4.40 2.16 3.2 5.6 1.2 0.07 2 1983 0.05 T 2.73 1.33 3.04 6.00 3.01 0.40 0.2 5.8 0.8 3.0 1.00 0.26 3.27 0.88 3.00 4.50 2.265 2.81 5.8 0.	1979	1.12	0.01	1.73	2.31	2.74	2.12	5.54	2.31			1.51	Т	22 39
1082 1.16 T 1.35 1.80 9.85 3.88 4.40 2.16 3.2 5. 1.20 0.03 1.20 0.03 1.20 0.20 2.3 0.20 2.3 0.20 2.3 0.20 2.3 0.20 2.3 0.20 2.3 0.20 2.3 0.20 2.3 0.20 2.3 0.20 0.20 2.3 0.20	1980	0.21	0.21	0.58	0.95	2.46	2.95	0.82	3.99			0.05	0.42	
1983 0.05 T 2.73 1.83 3.04 6.00 3.01 0.49 6.2 1.8 9.2 0.7 1984 0.09 1.50 1.72 5.88 3.30 4.50 2.86 3.92 6.8 3.9 0.4 8.9 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.0 0.4 0.9 0.2 0.4 0.9 0.9 0.0 0.4 0.9 0.9 0.0 0.4 0.9 0.9 0.0 0.4 0.9 0.9 0.9 0.0	1981	0.20	0.05	2.25	1.13	2.92	3.45	6.19	1.66			1.43	0.72	
1984 0.00 1.50 1.72 5.88 3.30 4.50 2.86 3.82 6.8 3.8 6.9 2.8 3.82 6.8 3.8 6.9 2.0 0.44 0.9 0.0 1.47 M2.76 2.28 2.65 2.81 5.88 6.8 6.9 6.0 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 7.1 <th7.1< th=""> <th7.1< th=""> <th7.1< th=""></th7.1<></th7.1<></th7.1<>	1982	1.16	Т	1.35	1.30	9.55	3.85	4.90	2.15			1.21	0.91	
1985 0.97 T 1.47 M2.76 2.28 2.66 2.81 6.38 4,9 6,0 2.00 0.44 2.25 1986 0.49 0.12 1.71 4.10 2.82 4.05 2.06 2.18 3.8 6,0 0.18 0.8 0.51 0.6 2.8 1987 0.26 1.72 5.01 1.22 1.17 3.61 0.21 1.70 1.79 6,0 0.8 0	1983	0.05	Т	2.73	1.83	3.04	6.00	3.01	0.49			1.92	0.97	
1986 0.49 0.12 1.71 4.10 2.82 4.05 2.06 2.18 3.8 9.9 0.12 0.17 0.11 2.17 3.61 4.21 2.50 1.8 0.2 0.18 0.2 0.18 0.8 0.12 0.17 0.51 0.71<	1984	0.09	1.50	1.72	5.88	3.30	4.50	2.86	3.92			0.18	0.24	
1987 0.26 1.72 5.01 1.22 1.17 3.61 4.21 2.50 8. 0.2 1.18 0.87 0.25 1988 1.77 0.41 0.89 2.59 7.16 0.72 1.70 1.79 5.9 0.6 0.89 0.5 2.4 1989 0.03 0.61 0.44 1.33 0.98 1.82 2.48 1.23 1.7 0.4 0.35 0.4 0.3 0.4 0.3 0.41 0.89 1.2 1.17 0.41 0.40 0.4 0.41 <t< td=""><td>1985</td><td>0.97</td><td>Т</td><td>1.47</td><td>M2.76</td><td>2.28</td><td>2.65</td><td>2.81</td><td>5.38</td><td></td><td></td><td>2.00</td><td>0.44</td><td></td></t<>	1985	0.97	Т	1.47	M2.76	2.28	2.65	2.81	5.38			2.00	0.44	
1988 1.77 0.41 0.89 2.59 7.16 0.72 1.70 1.79 5.6 6.6 0.89 0.51 28 1999 0.03 0.61 0.84 1.33 0.98 1.82 2.48 1.23 1.7 2.4 0.55 3.50 3.5 1.40 0.40 0.30 1.37 2.79 5.40 2.64 3.55 3.50 3.5 1.40 0.30 1.47 0.30 1.41 3.00 4.12 3.11 0.88 2.02 0.2 1.9 1.43 0.03 1.41 3.00 6.18 4.32 1.08 2.0 0.89 0.21 1.00 0.61 1.91 6.41 3.10 2. 0.8 <t< td=""><td>1986</td><td>0.49</td><td>0.12</td><td>1.71</td><td>4.10</td><td>2.82</td><td>4.05</td><td>2.06</td><td>2.18</td><td></td><td></td><td>0.51</td><td></td><td></td></t<>	1986	0.49	0.12	1.71	4.10	2.82	4.05	2.06	2.18			0.51		
1989 0.03 0.61 0.84 1.33 0.98 1.82 2.48 1.23 1.7 0.4 0.65 1.11 1.7 1990 0.06 0.30 1.37 2.79 6.40 2.64 3.55 3.50 9.8 1.4 0.44 0.35 1.4 0.4 0.30 1.7 0.7 6.40 2.64 3.55 3.50 9.8 1.4 0.4 0.30 1.7 0.4 0.51 1.91 0.641 3.10 2.1 0.6 0.89 0.21 1.05 0.11 3.17 1.49 4.59 4.46 2.12 2.8 7.8 0.89 0.21 0.5 0.98 0.12 0.5 0.98 0.41 0.9 1.50 0.51 0.50 0.51 0.50 0.51 0.50 0.51 0.50 0.57 0.57 0.51 0.59 0.51 0.59 0.51 0.51 0.50 0.51 0.51 0.53 0.52 2.67 3.11	1987	0.26	1.72	5.01	1.22	1.17	3.61	4.21	2.50			1.18	0.87	
1990 0.06 0.30 1.37 2.79 5.40 2.64 3.55 3.50 38 14 0.40 0.35 11 1991 0.21 1.06 M1.14 3.00 4.12 3.11 0.88 2.02 80 17 1.43 0.03 17 1992 0.79 0.68 1.18 1.06 0.61 1.91 6.41 3.10 2.1 6.8 0.42 1.8 0.4 2.1 1.43 0.03 1.43 0.44 2.1 1.14 0.04 2.1 1.14 0.11 1.91 6.41 3.10 2.1 6.1 1.14 0.14 1.14 0.14 1.14 0.14 1.11 0.14 1.11 1.1	1988	1.77	0.41	0.89	2.59	7.16	0.72	1.70	1.79			0.89	0.51	
1383434304.123.110.882.02 $0.821.71.430.031.7119920.790.681.181.060.611.916.413.102.10.60.890.211.6119930.230.981.132.903.396.184.321.082.10.61.880.477.7119940.530.560.113.171.494.594.462.122.81.70.640.477.719950.300.443.645.146.301.521.360.597.72.31.120.580.210.5719961.130.180.991.647.062.591.580.597.72.31.120.582.6719970.511.030.243.322.952.673.111.932.22.71.620.161.719990.310.600.634.935.836.953.313.282.20.71.82.130.541.719990.310.600.634.935.836.953.313.282.20.71.1219990.310.600.634.935.836.953.313.282.20.71.720012.33M1.130.276.3$	1989	0.03	0.61	0.84	1.33	0.98	1.82	2.48	1.23			0.65	1.11	
1992 0.79 0.68 1.18 1.06 0.61 1.91 6.41 3.10 2.6 0.8 0.21 0.8 1993 0.23 0.98 1.13 2.90 3.39 6.18 4.32 1.08 2.1 6.8 0.4 2.7 1.99 0.53 0.56 0.11 3.17 1.49 4.59 4.46 2.12 2.8 7.9 0.64 0.7 2.9 1995 0.30 0.44 3.64 5.14 6.30 1.52 1.36 0.99 7.5 2.9 1.2 0.8 2.9 0.13 0.99 1.64 7.06 2.59 1.58 0.59 7.5 2.9 1.2 0.8 2.9 1.99 0.51 1.03 0.24 3.32 2.95 2.67 3.11 1.93 2.9 0.8 0.16 0.14 0.9 1.9 1999 0.31 0.60 0.63 4.93 5.83 6.95 3.31 3.28 2.9	1990	0.06	0.30	1.37	2.79	5.40	2.64	3.55	3.50			0.44	0.35	
1 0.5 - 0.6 1993 0.23 0.98 1.13 2.90 3.39 6.18 4.32 1.08 6.1 5.6 0.44 2.7 1994 0.53 0.56 0.11 3.17 1.49 4.59 4.46 2.12 2.8 7.7 0.64 0.44 0.47 2.0 0.0 0.44 3.64 5.14 6.30 1.52 1.36 3.98 4.7 3.8 0.8 0.90 0.4 0.44 0.90 1.64 7.06 2.59 1.58 0.59 7.8 2.9 0.8 0.99 0.4 0.42 0.30 0.14 0.42 0.30 0.14 0.42 0.30 0.14 0.42 0.30 0.14 0.43 0.57 3.11 1.93 2.9 0.16 0.14 0.10 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 <td>1991</td> <td>0.21</td> <td>1.06</td> <td>M1.14</td> <td>3.00</td> <td>4.12</td> <td>3.11</td> <td>0.88</td> <td>2.02</td> <td></td> <td></td> <td>1.43</td> <td>0.03</td> <td></td>	1991	0.21	1.06	M1.14	3.00	4.12	3.11	0.88	2.02			1.43	0.03	
1994 0.53 0.56 0.11 3.17 1.49 4.59 4.46 2.12 1.8 1.7 0.6 0.47 0.30 1995 0.30 0.44 3.64 5.14 6.30 1.52 1.36 3.98 4.7 3.8 0.95 0.32 0.30 1996 1.13 0.18 0.99 1.64 7.06 2.59 1.58 0.59 7.5 2.7 0.8 2.7 0.8 2.7 2.8 2.7 0.8 2.9 2.67 3.11 1.93 2.2 2.7 0.10 0.12 2.8 2.9 2.67 3.11 1.93 2.2 2.7 0.10 0.10 2.1 2.80 5.79 3.27 4.42 8.3 5.9 1.62 0.16 3.1 1999 0.31 0.60 0.63 4.93 5.83 6.95 3.31 3.28 2.9 6.16 1.19 1.12 2.16 1.13 0.27 6.34 3.07	1992	0.79	0.68	1.18	1.06	0.61	1.91	6.41	3.10			0.89	0.21	
18 77 10 1995 0.30 0.44 3.64 5.14 6.30 1.52 1.36 3.98 4,7 58 0.92 5.02	1993	0.23	0.98	1.13	2.90	3.39	6.18	4.32	1.08			1.58	0.34	
1996 1.13 0.18 0.99 1.64 7.06 2.59 1.58 0.99 7.5 2.3 1.12 0.58 6 1997 0.51 1.03 0.24 3.32 2.95 2.67 3.11 1.93 2.2 2.95 3.67 3.11 1.93 2.2 0.18 0.12 2.8 1998 0.42 0.30 M1.49 2.71 2.80 5.79 3.27 4.42 3.3 5.9 1.02 2.4 1999 0.31 0.60 0.63 4.93 5.83 6.95 3.31 3.28 2.2 0.7 0.14 0.20 2.4 2000 0.66 0.88 0.36 1.36 3.43 2.39 0.98 0.84 0.7 1.8 0.20 2.4 2001 2.33 M1.13 0.27 6.34 3.07 1.28 4.36 0.04 4.1 1.7 2.2 0.8 0.17 1.3 2002 0.37 0.03 1.29 1.65 2.54 1.36 1.94 3.48 0	1994	0.53	0.56	0.11	3.17	1.49	4.59	4.46	2.12			0.64	0.47	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1995	0.30	0.44	3.64	5.14	6.30	1.52	1.36	3.98			0.95	0.32	
1998 0.42 0.30 M1.49 2.71 2.80 5.79 3.27 4.42 3.3 5.9 1.62 0.16 3.1 1999 0.31 0.60 0.63 4.93 5.83 6.95 3.31 3.28 2.2 0.7 0.14 0.2 2.4 2000 0.66 0.88 0.36 1.36 3.43 2.39 0.98 0.84 0.7 1.8 2.13 0.54 3.3 2001 0.66 0.88 0.36 1.36 3.43 2.39 0.98 0.84 0.7 1.8 2.13 0.54 1.3 2001 2.33 M1.13 0.27 6.34 3.07 1.28 4.36 0.04 4.1 0.7 1.9 0.11 2.2 2.2 0.8 0.17 1.3 2002 0.37 0.03 1.29 1.65 2.54 1.36 1.08 3.14 1.7 2.2 0.8 0.17 1.3 2003 M0.52 M0.59 0.50 2.81 3.32 3.45 1.94 3	1996	1.13	0.18	0.99	1.64	7.06	2.59	1.58	0.59			1.12	0.58	
1999 0.31 0.60 0.63 4.93 5.83 6.95 3.31 3.28 21 10 0.14 0.20 24 2000 0.66 0.88 0.36 1.36 3.43 2.39 0.98 0.84 0.7 1.8 2.13 0.14 0.20 2.4 2001 0.66 0.88 0.36 1.36 3.43 2.39 0.98 0.84 0.7 1.8 2.13 0.14 1.7 2.13 0.14 1.7 2.13 0.14 1.7 2.13 0.14 1.7 2.13 0.14 1.7 2.13 0.14 1.7 2.13 0.14 1.7 2.13 0.14 2.13 0.14 2.13 0.14 1.7 2.13 0.15 2.13 0.15 2.13 0.15 2.13 0.15 2.13 0.14 1.17 2.13 0.17 1.3 2.13 0.17 1.3 2.13 0.17 1.3 2.14 0.17 1.3 2.1 <td>1997</td> <td>0.51</td> <td>1.03</td> <td>0.24</td> <td>3.32</td> <td>2.95</td> <td>2.67</td> <td>3.11</td> <td>1.93</td> <td></td> <td></td> <td>0.18</td> <td>0.12</td> <td></td>	1997	0.51	1.03	0.24	3.32	2.95	2.67	3.11	1.93			0.18	0.12	
12 17 14 17 14 17 14 17 14 17 14 17 14 17 18 11 22 10 11 22 10 11 22 10 11 23 11 23 11 11 23 11 11 23 11 11 23 11 11 23 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 <th11< th=""> 11 11 <th1< td=""><td>1998</td><td>0.42</td><td>0.30</td><td>M1.49</td><td>2.71</td><td>2.80</td><td>5.79</td><td>3.27</td><td>4.42</td><td></td><td></td><td>1.62</td><td>0.16</td><td>32 1</td></th1<></th11<>	1998	0.42	0.30	M1.49	2.71	2.80	5.79	3.27	4.42			1.62	0.16	32 1
2001 2.33 $M1.13$ 0.27 6.34 3.07 1.28 4.36 0.04 $4.$ $0.$ 1.79 0.11 $2.$ 2002 0.37 0.03 1.29 1.65 2.54 1.36 1.08 3.14 $1.$ $2.$ 0.8 0.17 1.3 2003 $M0.52$ $M0.59$ 0.50 2.81 3.32 3.45 1.94 3.48 0.8 0.8 0.78 0.17 1.9 2004 0.30 0.28 2.80 0.87 4.50 5.69 2.18 1.07 $4.$ 2.6 0.38 0.13 2.4 2005 0.43 0.60 1.02 2.51 4.16 8.79 0.99 1.54 $2.$ 0.8 2.29 0.57 2.6 2006 0.46 0.27 1.88 2.57 1.27 2.76 1.89 3.43 $4.$ 0.5 0.57 1.56 2.57 2007 $M0.22$ 0.93 2.55 3.88 6.07 4.41 0.64 4.31 $1.$ $5.$ 0.1 $M0.7$ $M0.7$	1999	0.31	0.60	0.63	4.93	5.83	6.95	3.31	3.28	2. 12		0.14	0.20	28 4
2002 0.37 0.03 1.29 1.65 2.54 1.36 1.08 3.14 1, 37 2, 0.8 0.17 3, 33 2003 M0.52 M0.59 0.50 2.81 3.32 3.45 1.94 3.48 0, 89 0.78 0.17 1, 33 2004 0.30 0.28 2.80 0.87 4.50 5.69 2.18 1.07 4, 9 2, 0.88 0.17 1, 00 2005 0.43 0.60 1.02 2.51 4.16 8.79 0.99 1.54 2, 9 0, 78 2, 17 1, 10 2006 0.46 0.27 1.88 2.57 1.27 2.76 1.89 3.43 4, 05 0, 10 2, 00 0, 10 2, 00 0, 10 2, 00 1, 10 2, 00 1, 10	2000	0.66	0.88	0.36	1.36	3.43	2.39	0.98	0.84			2.13	0.54	
2003 M0.52 M0.59 0.50 2.81 3.32 3.45 1.94 3.48 0.58 89 0.78 0.17 10 2004 0.30 0.28 2.80 0.87 4.50 5.69 2.18 1.07 4. 2.6 0.38 0.13 2.4 2005 0.43 0.60 1.02 2.51 4.16 8.79 0.99 1.54 2.9 0.68 2.9 0.75 2.4 2006 0.46 0.27 1.88 2.57 1.27 2.76 1.89 3.43 4. 0.5 0.57 1.65 2.07 2007 M0.22 0.93 2.55 3.88 6.07 4.41 0.64 4.31 1. 5.7 0.01 M0.28 3.48 3.48 4.31 1. 5.7 0.01 M0.8 3.48 4.31 5.7 0.01 M0.8 3.48 3.48 3.48 5.7 0.01 74 3.48 3.43 4.31 5.7 0.01 74 3.48 3.48 5.7 0.01 74 3.48<	2001	2.33	M1.13	0.27	6.34	3.07	1.28	4.36	0.04			1.79	0.11	
2004 0.30 0.28 2.80 0.87 4.50 5.69 2.18 1.07 4. 2.6 0.38 0.13 2.4 2005 0.43 0.60 1.02 2.51 4.16 8.79 0.99 1.54 2.9 0.68 2.9 0.75 2.11 2006 0.46 0.27 1.88 2.57 1.27 2.76 1.89 3.43 4. 0.5 0.57 1.65 2.07 2007 M0.22 0.93 2.55 3.88 6.07 4.41 0.64 4.31 1. 5.7 0.01 M0. 36		0.37	0.03		1.65				3.14					3
19 06 4 2005 0.43 0.60 1.02 2.51 4.16 8.79 0.99 1.54 2. 0.8 2.29 0.75 2.4 2006 0.46 0.27 1.88 2.57 1.27 2.76 1.89 3.43 4. 0.5 0.57 1.65 2.05 2007 M0.22 0.93 2.55 3.88 6.07 4.41 0.64 4.31 1. 5. 0.01 M0. 34									3.48					0
2006 0.46 0.27 1.88 2.57 1.27 2.76 1.89 3.43 4. 0. 0.57 1.65 20 2007 M0.22 0.93 2.55 3.88 6.07 4.41 0.64 4.31 1. 5. 0.01 M0. 34									1.07	19				4
05 25 0 2007 M0.22 0.93 2.55 3.88 6.07 4.41 0.64 4.31 1. 5. 0.01 M0. 3 54 57 74 8	2005	0.43	0.60	1.02	2.51	4.16	8.79	0.99	1.54			2.29	0.75	
54 57 74 8	2006	0.46	0.27	1.88	2.57	1.27	2.76	1.89	3.43			0.57		0
2008 0.30 0.51 0.70 2.43 2.69 6.75 2.35 3.25 1. 4. 0.90 0.64 29									4.31			0.01		30 8
	2008	0.30	0.51	0.70	2.43	2.69	6.75	2.35	3.25	1.	4.	0.90	0.64	2

									32	09			93
2009	0.68	0.69	1.52	1.23	0.87	2.69	0.00	5.01	0. 89	4. 20	Т	0.68	18. 46
2010	0.76	0.49	1.05	2.81	3.57	5.79	5.15	1.56	2. 57	0. 76	M0. 15	0.15	24. 81
2011	0.75	0.85	0.33	2.40	4.16	9.95	2.89	2.58	0. 49	1. 74	0.10	0.18	26. 42
2012	0.35	1.81	1.13	4.03	3.37	1.64	0.67	1.25	0. 11	M0. 28	0.19	0.63	15. 46
2013	0.18	0.85	0.61	2.13	5.42	4.08	4.85	3.00	1. 38	3. 07	0.26	0.35	26. 18
2014	0.12	0.11	0.37	1.68	2.07	2.75	0.08	7.10	0. 94	0. 50	0.27	0.99	16. 98
2015	0.15	0.19	0.12	0.72	4.91	2.21	6.02	4.97	2. 98	1. 06	1.99	0.89	26. 21
2016	0.27	0.29	1.15	5.83	3.12	1.08	1.10	4.73	4. 83	1. 02	0.97	1.08	25. 47
2017	0.70	0.20	0.18	3.15	1.70	1.16	0.22	4.38	5. 11	0. 79	0.23	0.30	18. 12
2018	0.21	0.60	M0.43										1.24
Notes: Data missing in any month have an "M" flag. A "T"													

indicates a trace of precipitation.

Data missing for all days in a month or year is blank.

Creation date: 2016-07-22

Appendix E – Fort Randall Dam Average Pool Levels

FTRA Reservoir

AVERAGE DAILY MIDNIGHT ELEVATION (ft msl)

22-Aug-17

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANN MIN	ANN AVE	ANN MAX
1967 1968 1969 1970	1333.1 1337.8 1335.4	1345.8 1344.3 1347.0	1353.9 1347.4 1357.3	1353.6 1359.1 1360.8	1354.4 1359.4 1360.7	1361.6 1354.0 1356.4 1355.7	1363.7 1353.2 1357.4 1355.7	1360.5 1352.2 1354.5 1354.0	1351.9 1349.2 1350.2 1350.2	1340.1 1342.8 1339.1 1341.2	1328.1 1328.9 1323.8 1327.4	1328.1 1322.7 1320.7 1327.1	1322.7 1320.7 1327.1	1345.3 1345.8 1347.7	1354.4 1359.4 1360.8
1971	1339.0	1347.8	1353.2	1354.8	1357.7	1360.9	1361.1	1361.1	1358.3	1352.4	1342.1	1339.6	1339.0	1352.3	1361.1
1972	1345.0	1351.6	1358.0	1361.3	1363.9	1363.4	1362.2	1360.4	1357.3	1352.2	1342.8	1343.8	1342.8	1355.2	1363.9
1973	1347.4	1351.5	1358.1	1358.5	1356.1	1356.4	1355.1	1354.2	1351.9	1351.8	1342.7	1340.5	1340.5	1352.0	1358.5
1974	1346.4	1350.9	1355.0	1354.1	1354.8	1353.5	1354.9	1352.9	1352.0	1347.9	1341.7	1341.4	1341.4	1350.5	1355.0
1975	1344.7	1350.6	1357.1	1359.3	1361.4	1362.0	1361.4	1356.5	1351.2	1346.3	1342.0	1340.5	1340.5	1352.8	1362.0
1976	1345.6	1351.1	1356.7	1355.6	1355.1	1354.2	1354.7	1355.3	1354.7	1351.5	1343.4	1339.7	1339.7	1351.5	1356.7
1977	1344.9	1350.1	1356.4	1359.0	1358.6	1355.1	1353.3	1352.3	1351.6	1347.8	1341.4	1345.8	1341.4	1351.4	1359.0
1978	1348.2	1350.4	1355.6	1361.6	1360.2	1358.5	1358.5	1357.3	1355.6	1351.8	1345.4	1341.6	1341.6	1353.7	1361.6
1979	1347.4	1350.8	1356.8	1358.8	1357.3	1357.0	1356.9	1355.8	1354.6	1349.4	1342.4	1339.0	1339.0	1352.2	1358.8
1980	1341.5	1350.4	1356.4	1355.2	1353.5	1355.5	1354.0	1355.7	1354.1	1348.1	1340.0	1339.7	1339.7	1350.3	1356.4
1981	1345.0	1350.6	1355.4	1357.1	1358.1	1357.1	1355.8	1354.8	1353.6	1343.4	1337.0	1339.0	1337.0	1350.6	1358.1
1982	1345.8	1348.8	1356.2	1355.9	1356.7	1356.3	1356.6	1355.4	1356.7	1353.8	1344.3	1338.5	1338.5	1352.1	1356.7
1983	1346.3	1351.2	1355.9	1356.8	1356.6	1356.5	1357.5	1355.6	1354.7	1349.0	1342.6	1341.4	1341.4	1352.0	1357.5
1984	1347.0	1351.5	1355.1	1361.1	1360.9	1361.4	1360.5	1356.2	1355.2	1350.9	1341.5	1339.8	1339.8	1353.4	1361.4
1985	1346.4	1349.5	1353.9	1353.9	1355.9	1354.9	1355.2	1355.7	1355.5	1349.2	1341.2	1340.3	1340.3	1351.0	1355.9
1986 1987	1345.4 1343.6	1349.5 1350.4	1355.3 1356.9	1357.2 1359.8	1360.9 1358.3	1360.2 1357.5	1355.7 1356.1	1356.0 1354.7	1357.2 1353.6	1353.3 1349.4	1343.6 1340.5	1340.3 1339.1 1340.1	1340.5 1339.1 1340.1	1352.8 1351.7	1360.9 1359.8
1988	1344.7	1349.6	1354.6	1355.4	1356.0	1355.5	1355.3	1354.5	1352.2	1345.4	1338.4	1340.5	1338.4	1350.2	1356.0
1989	1346.2	1350.6	1356.4	1355.3	1355.8	1355.0	1355.0	1354.4	1351.6	1341.3	1338.9	1340.0	1338.9	1350.0	1356.4
1990	1345.0	1348.2	1352.6	1353.3	1355.8	1356.4	1354.6	1354.3	1350.5	1341.6	1338.2	1339.7	1338.2	1349.2	1356.4
1991	1344.6	1350.4	1354.6	1353.7	1355.4	1357.6	1354.9	1355.0	1355.7	1344.5	1339.2	1341.2	1339.2	1350.6	1357.6
1992	1344.6	1350.5	1355.0	1355.1	1354.8	1354.3	1355.7	1354.9	1349.9	1339.5	1337.8	1339.7	1337.8	1349.3	1355.7
1993	1345.6	1350.2	1355.5	1356.9	1357.1	1357.0	1359.5	1359.7	1354.8	1348.3	1339.9	1340.6	1339.9	1352.1	1359.7
1994	1344.2	1349.6	1355.2	1354.5	1355.0	1355.7	1355.3	1355.2	1354.7	1349.2	1340.6	1342.0	1340.6	1350.9	1355.7
1995	1347.8	1350.5	1354.1	1358.4	1366.0	1365.8	1361.3	1358.9	1353.5	1348.5	1341.1	1342.5	1341.1	1354.0	1366.0
1996	1346.4	1353.1	1355.3	1355.2	1356.9	1360.1	1359.5	1356.6	1352.8	1349.7	1340.2	1342.9	1340.2	1352.4	1360.1
1997 1998 1999 2000	1348.5 1347.9 1346.5 1339.4	1352.0 1352.2 1351.0 1351.7	1356.5 1354.3 1352.7 1354.5	1355.2 1368.7 1356.1 1357.0 1355.1	1370.5 1355.2 1360.6 1356.5	1370.1 1356.8 1359.0 1354.9	1355.5 1368.0 1356.5 1360.6 1354.9	1355.0 1355.4 1357.0 1355.1	1352.0 1362.0 1353.7 1353.7 1354.3	1352.5 1351.4 1349.4 1341.4	1342.8 1343.2 1343.1 1334.7	1340.4 1339.2 1339.8 1338.7	1340.4 1339.2 1339.8 1334.7	1358.3 1351.8 1352.5 1349.3	1370.5 1356.8 1360.6 1356.5
2001	1343.7	1348.6	1355.2	1361.8	1363.1	1358.3	1356.1	1355.3	1354.2	1348.7	1340.4	1342.6	1340.4	1352.3	1363.1
2002	1346.0	1347.8	1349.7	1352.2	1349.8	1352.8	1354.7	1355.2	1353.2	1342.9	1337.1	1340.9	1337.1	1348.5	1355.2
2003	1343.5	1347.9	1352.7	1354.2	1353.1	1352.1	1353.9	1353.8	1353.6	1349.2	1340.3	1342.1	1340.3	1349.7	1354.2
2004	1343.8	1346.0	1354.2	1354.3	1355.0	1355.7	1354.2	1353.5	1349.1	1341.1	1338.4	1340.1	1338.4	1348.8	1355.7
2005	1342.6	1349.2	1353.1	1356.2	1355.8	1356.3	1355.0	1353.2	1348.4	1342.2	1340.1	1339.3	1339.3	1349.3	1356.3
2006	1345.7	1347.7	1353.0	1356.9	1356.8	1355.1	1354.4	1353.3	1348.7	1339.3	1338.0	1339.2	1338.0	1349.0	1356.9
2007	1344.8	1349.5	1355.7	1358.5	1359.3	1356.4	1354.7	1355.3	1350.0	1342.1	1340.8	1342.2	1340.8	1350.8	1359.3
2008	1343.2	1347.8	1354.6	1355.7	1357.6	1360.7	1356.4	1354.5	1347.5	1339.0	1341.1	1339.3	1339.0	1349.8	1360.7
2009	1344.3	1350.2	1354.8	1356.7	1357.1	1355.0	1355.7	1354.9	1355.1	1351.2	1341.5	1337.8	1337.8	1351.2	1357.1
2010 2011 2012	1343.6 1343.2	1348.1 1348.5	1356.1 1353.9	1361.2 1358.6	1360.3 1356.7	1364.8 1365.5	1364.2 1372.7	1359.7 1365.1	1353.1 1356.5	1349.3 1348.9	1339.6 1339.2	1339.0 1338.6	1339.0 1338.6	1353.2 1353.9	1364.8 1372.7
2012 2013 2014 2015		1349.0 1348.8 1346.8 1347.9	1352.3 1352.8 1351.0 1352.3	1353.6 1354.8 1352.6 1354.5	1355.8		1355.1			1349.9 1350.9 1348.4 1349.0				1350.0 1350.5 1350.1 1351.1	
2016 2017	1341.3 1343.1	1349.2 1349.8	1352.8 1353.6	1355.5 1355.8		1357.1 1355.0	1355.3 1355.7	1355.5	1354.8	1349.4	1340.8	1338.0	1338.0	1350.8	1360.2
MIN AVG MAX STDEV		1344.3 1349.5 1353.1 1.8	1347.4 1354.6 1358.1 2.1	1356.8	1357.6	1352.1 1357.6 1370.1 3.6		1352.2 1356.1 1368.0 3.0	1347.5 1353.4 1362.0 2.8		1323.8 1339.6 1345.4 4.3	1320.7 1339.1 1345.8 4.6	1320.7 1338.5 1342.8 4.2	1345.3 1351.1 1358.3 2.2	

Statistics for Years 1967-2016